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1.0 INTRODUCTION

There has been considerable interest in the nonlinear electrodynamical
characteristics of microparticle composites (Refs. 1,2). Of particular interest are

situations in which one or more of the microparticle% Frohlich modes have been
resonantly excited by incident laser light. For such situations excitation of this surface
mode amplifies the incident laser intensity which gives rise to enhanced nonlinear optical

coefficients (Ref. 3).

Theory for surface-enhanced phase conjugation and coherent beam combina-
tion (or coherent two-wave mixing) is relatively primitive, and this final report focuses

on calculating the third-order susceptibility, its magnitude, spectral range, response

time, and possible saturation characteristics.

The amplitude of the laser electric field in the vicinity of a metallic
microparticle is dramatically amplified at the surface plasma frequency. This feature of
microparticle electrodynamics arises from a resonant coupling of the laser radiation with
the electron plasma mode and has been used as a means to greatly enhance a variety of

nonlinear processes.

In the theoretical studies, the electrodynamic problem of metallic
microparticle composites has been treated globally, calculating the multipole moment

induced upon the microparticles by the applied field. The surface-plasma resonance as

well as the local field enhancement of the microparticles within the quasi-hydrodynamic

formalism was obtained directly. In the theory the local field enhancement factors come
in naturally. However, in other quantum mechanical calculations the enhancement

factors have to be added at the end for the local field.

The linear response, which includes the linear fields, linear susceptibility,
refractive index, and extinction coefficient with enhancement at the surface plasma

dipole mode frequency will be calculated. The linear response always co-exists with the
third-order response at fundamental frequencies. In particular, the linear absorption is

an important limiting factor in the third-order nonlinear processes. The second-order
response, which includes the second-order fields and intensity for the sum and difference

frequency generation with enhancement at the surface plasma dipole and quadrapole
mode frequencies will also be calculated. The sum and difference frequency generations



are intermediate processes to nondegenerate phase conjugation and coherent two-wave

mixing in microparticle composites. The dc rectified and second harmonic generations

are intermediate processes to degenerate and nondegenerate phase conjugation and

coherent two-wave mixing in microparticle composites.

Then, the third-order response, which includes the third-order fields and

susceptibility with enhancement at the surface plasma dipole frequency, will be

calculated. The contribution of third-order susceptibility arises in microparticle

composites through the product of linear fields and second-order fields as well as in the

triple product of the linear fields. The contribution from the triple product of the linear

fields, which is the commonly known direct effect, is not the major source of the third-

order nonlinearity. The contribution from the second-order fields, referred to as

cascading effect, is the dominant one. The time-dependent third-order susceptibility will

be calculated to explain the transient behaviors in the wave-mixing for the microparticle

composites.

To be more specific, the nonlinear electrodynamics of a microparticle

composite are examined using a solid-state nonlocal continuum theory (Refs. 3,4,5). The

problem is formulated in terms of the perturbative response of a particle, which consists

of a degenerate electron gas moving in a positive uniform jellium (a uniform positively

charged medium against which the electrons move) background, to laser beams within the

quasi-hydrodynamic approximation (Refs. 4,5). The first-order, second-order and third-

order dynamic responses of the particle to laser light are extracted. Specifically, the

perturbed electron density and drift velocity are determined as well as the laser-induced

dipole and quadrupole moments. The electrodynamic properties of the local fields in the

vicinity of the microparticles are also resolved. The macroscopic electrodynamic

response of the medium as a whole and results for th#- intensity, polarization, and angular

dependence are presented.

In experimental studies, the phase conjugation and coherent two-wave mixing

both in CS2 and gold colloids were performed using picosecond pulses. The experiments

done in CS2 , which is a well-studied simple Kerr liquid, were used to calibrate the more

complex gold colloid system. From the degenerate phase conjugation experiments done

in CS2 and gold colloids, the degenerate third-order susceptibility for gold colloids was

obtained. The transient time-resolved degenerate two-wave mixing experiments were

2



performed to investigate the coherent coupling coefficients in the time domain for

nonlinear media. The polarization resolved experiments were also performed to study

the anisotropy of the third-order susceptibility.

The experimental values of the third-order susceptibility for the gold colloids

are larger than the calculated values from the free carrier contribution within the quasi-

hydrodynamic formalism. It indicates that the gold colloids have other nonlinear

mechanisms involved. However, for the silver colloids the third-order susceptibility

between the experimental and theoretical values, which are l0-9 esu per sphere, are

comparable. This can be explained by the fact that the plasma frequency of silver falls

just below the threshold for d-electron transitions and so free electron behavior is

approximately satisfied for silver. For gold, the threshold of core electron transition lies

at a frequency below the plasma frequency. The overlapping of valence electron and

d-electron transitions prevents the existence of a frequency range in which the free

electron behavior is dominant. Therefore, the third-order susceptibility of gold colloids

will result from the d-electron contribution as well.

The experiment and the theory for transient time-resolved and polarization-

resolved coherent two-wave mixing in CS2 are in excellent agreement. Qualitative

explanation for the transient time-resolved and polarization-resolved coherent two-wave

mixing in gold colloids will be given.

In search of alternative nonlinear optical materials, there was a theoretical

investigation of the one-dimensional conjugated polymers. A one-dimensional lattice

model Hamiltonian was used to calculate their third-order polarization and

susceptibility. The nonresonant nonlinearity of the conjugated polymers below their band

gap is on the order of 10-10 esu.

The final part of the report gives conclusions and recommendations for

microparticle composites as well as conjugated polymers as a phase-conjugation or image

amplification mediums.

3



2.0 THEORY

Consider a metallic microparticle composite whose particle size is < 100 A.

This is small compared to any of the radiation wavelengths so that the Rayleigh limit is

valid. Also, the quasi-static approximation is used where the Maxwell equations are

reduced to the electrostatic equation. If the incident and nonlinear-generated

frequencies are all sufficiently high, the ionic (or phonon) contribution inside the

microparticles will be negligible. It is assumed that each of the microparticles in the

composite consists of a rigid, positive jellium background with charge density eno

accompanied by a degenerate electron gas. The dynamics of the electron gas is

described by the quasi-hydrodynamic theory with damping. Charge neutrality demands

that the unperturbed electron density be no and in the presence of laser radiation the

perturbed electron density is denoted by n(r,t). Note that Fuchs and Kliewer have shown

that the hydrodynamic and self-consistent field approximations yield the same results at

all experimentally accessible frequencies (Ref. 6). Thus, Landau damping can be

accounted for with a simple dissipation model characterized by a frequency-independent

damping constant, v. It is also assumed that microparticle size exceeds 20 A so that the

quantum-size effect is not important (Ref. 7).

The hydrodynamic equations, which are the Euler equation and the equation of

continuity, govern the response of the electron gas to incident laser radiation. Here, the

nonlinear response of a single-sphere, which consists of a degenerate electron gas,

confined to a microsphere of radius a, embedded in a passive linear dielectric and

irradiated by laser beams is examined. The unperturbed electron profile is taken to be a

step function. Although a step function does poorly for a flat meta; surface (Ref. 8), it is

used here for several reasons. (1) It is the standard model used for modeling the

nonlinear optics due to the resonant plasmon responses of metallic microspheres

(Ref. 9*) and using more complex spatial profiles is computationally prohibitive. (2) The

nonlinear plasmon response appears to involve the electron fluid deep within the

microsphere, not just at the surface. Thus, on physical grounds, the frequency-mixing

properties of these resonances should not be overly sensitive to the details of the

*In their calculation, a circularly polarized light is used and no second-order monopole

response.
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electron profile near the surface. Mathematically, this is reflected in the fact that the

dipole and quadrupole moments require an integration of various moments of the density

over the entire volume of the microsphere. (3) Although other profiles will give different
results, these differences are masked by the fact that numerous suspension parameters

(geometric shape, particle size distribution and metallic purity) will vary significantly

from the model and from sample-to-sample.

The physical situation is depicted in Figure 1. The wl beam is incident normal

to the surface of microparticle composite, is elliptically polarized, has a polarizationA A A

vector e1 = y + nz and a propagation vector k1 = klx within the medium. For a

circularly polarized light, n = i. The second laser beam is oriented at an angle eo with

respect to the first beam, has a unit polarization vector e2 = (xcose 2 + zsnne2 ) and a

propagation vector k2 = k 2 (rsine2 - zcos62 ) within the medium, where 02 = 412 - e0.
Here, kj = [6h(wj)]'/ 2wj/c, with eh(toj) the dielectric constant of the host at the frequency
(j..

x

I+ &k_,+)_

0+ -it/2112

00 a0

0Z

0 0

L/2

1k 1 .c1 W2) 1 2 w2)

Figure 1.* The system to be considered.



Within each microparticle, laser radiation induces an electron drift velocity,

v(r,t) whose dynamics are governed by the Euler equation

n(r,t){a/at + v + v(rt)-v)v(r,t) = -en(r,t)E(r,t)/m -vp(r,t) (1)

Here, v is the electron collision frequency and p(r,t) is the quarkturn pressure of the

degenerate electron gas, which within the Thomas-Fermi approximation (Ref. 9) is given

by

p(r3t) = [8!]2/ 3 (h 2 /5m)n(r,t) 5/ 3  (2)

The third term on the lefthand side of the Euler equation is the convective current,

which arises from the fact that the conduction electrons are a continuous medium in this

model. The first term on the righthand side of Equation I is the Lorentz force, the

magnetic term having been dropped within the electrostatic approximation. The last

term is due to quantum pressure, which gives rise to a spatial variation (i.e., a screening)

in the electron density near the microparticle surface in the presence of radiation. Thus,

the response of the electron gas is nonlocal. The perturbed electron charge density,

n(r,t) obeys the equation of continuity,

an(rt)/at + v-[n(r,t)v(r,t)1 = 0 (3)

The incident electric component of the laser radiation field Eo(rt) is given by

E0(r,t) = elA1 exp[t(kl-r - w1t) + e2 A2 exp[i(k 2 -r - w2 t)] + cc (4)

where ej, Aj, kj and wj (0 = 1,2) are the incident unit polarization vector, electric field

amplitude, wave vector and frequency of the jth laser beam. The total electric field

amplitude, E(r,t), in Equation I is driven by the perturbed charge density inside the

microparticle. Within the quasi-static approximation E(r,t) = - vt(r,t) where 9(r,t) is the

electrostatic potential. Outside the microparticle, the Laplace equation holds

v2 .(r.t) - 0 (5a)

6



Inside the microsphere, the electrostatic potential obeys Poisson's equation

v2 o(rt) = 4%en(rt)/cb (5b)

where the electrostatic potential is coupled to Equations I and 3 via n(r,t), and Eb is

the dielectric constant of the rigid jellium background. Equation 5a and b must be

supplemented with the usual electrostatic boundary conditions, namely that O(r,t) and

£ af(r,t)/ar are continuous at the surface. Since the Euler equation and the equation of

continuity are coupled together, only one additional boundary condition (ABC) is

required, which is usually chosen to be the acoustic condition to ensure that no electrons

flow across the boundary; viz., the radial component of the electron drift velocity will

vanish at the surface. These boundary conditions can be followed without any difficulties

in determining the linear response of the microparticle to laser light. However, in the

next order of perturbation theory, difficulties can arise in the presence of the monopole

response (Ref. 9). Specifically, if one demands that the second-order radial velocity

vanish at the microparticle's surface, then the integral of the second-order perturbed

electron density over the volume of the microparticle will deviate from zero. In turn,

this implies that the calculation does not conserve charge and reflects the fact that

there are basic inconsistencies in describing the microparticle response by means of a

relaxation model (Refs. 10,11,1 2). Here, a different additional boundary condition is used

for monopole responses, namely, that charge is conserved in every order of perturbation

theory. If this is done, then the second-order radial velocity will deviate from zero at

the microparticle's surface. Calculations in Section 3.2.3 show that within a screening

length of the surface, the ratio of the radial velocity at the surface to the maximum

velocity is on the order of v/,.,, where w+ is the frequency of the radiation generated by

the microparticle via nonlinear mixing processes. Thus, so long as v/w+ << 1, this

inconsistency is not significant.

An examination of Equations I and 2 reveals four nonlinear terms in the Euler

equation for the electron drift velocity: (1) the electron current, (2) the convective

current (3) the Lorentz force, and (4) the quantum pressure.

The electron density, drift velocity, quantum pressure, and the electrostatic

potential can be decomposed into the different possible frequency components. Thus, if

a(r,t) is any of these quantitites, then

7



a(r,t) = a0 + al(rwl) exp(-iwlt) + al(r'w2 ) exp(-iw2 t)

+ 02 (r,w_) exp(-iwt) + a2 (r,w+) exp(-iw+t) + 02 (r,o)

+ a2 (r,2wI) exp(-2iwlt) + a2 (r,2w2 ) exp(-2iw2 t)

+ 0 3 (r,wl)exp(-iwlt) + G3 (rgu 2 )exp(-1w2 t) + c.c.

(6)

where ao is the equilibrium value, aI are the linear response at fundamental frequencies

and the 02s are the sum (w+ = wI + w,2 ), difference (w_ = I - w2 ) frequency, a rectified dc(o)

and the second-harmonic (2wi) contributions for the second-order response, and 03 s are

the fundamental frequency contributions for the third-order response.

2.1 LINEAR RESPONSE

Inserting the perturbative expansion, i.e., Equation 6 into Equations I through

5, shows that the induced linear density satisfies the following equation

(v2 _ q2(w)l nj (r,w) = 0 (7a)

In Equation 7a, q(w) is the self-consistent, frequency-dependent screening wave vector,

which is given by

q(w) w2 _ W(W + iv)] 1/2 (7b)
[Wp /7

where p= (411n 0e2 /uMeb)11 2 is the plasma frequency and 82 = 0.6vF 2 with vF the Fermi

velocity. In the low-frequency limit, the screening wave vector becomes real and

reduces to the Thomas-Fermi value, qTF = .p /0. In this limit, the field barely

penetrates into the particle and the electron density is uniform everywhere, except in

the immediate vicinity of the particle's surface. In the high-frequency limit, i.e.,

W > 2p , q(w) has an imaginary part, the electron density is oscillatory.

Explicit expressions for the first-order electron density, electric field as well

as the drift velocity are given in Appendix A.
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2.2 SECOND-ORDER RESPONSE

To determine the quadratic response of the electron gas to two nondegenerate

laser beams oscillating at to and w2, insert the expressions for the linear electron density,

drift velocity and electric field into Equations I and 3 and extract those terms that are

oscillating at =± for sum (w+) and difference (w-) frequency generation. This leads to the

following equation for the second-order electron density response oscillating at W=:

[v 2 _ q2 (w_)]n 2 (r,w+) = -- 2 v-S(r;wl,3 w2 ) (8)

where the drive terms S(r;w 1, •w2 ) are defined by

S(r;wl,_w2) = 1wlnl(rmw)vl(r,+w2 ) - 1w2 n1 (rmw)vj(r,±w2 )

"+ n0 [vl(r,wl)-vJ v1 (r,+w2) + no[vl(r,-±w2)-vIVj(rw 1 )

"+ elmtnt(r,wl)El(r,±w2 ) + nl(r.+-w2 )El(r.wl)1

"+ (2o 2 /3n 0 )vInl(r,wj)nj(r,+-w2 ) (9)

The linear response n1 (r,w),vl(r,w) and El(r,w) are all enhanced at the surface mode

frequencies ws" The drive term S(r;w I,.± 2 ) may be doubly enhanced for w, and w2 near ws'
since S(r;wi,±w2 ) is a bilinear product of linear responses at wl and w2 . For compact nota-
tion, denote S(r;w1 , ±w2 ) as S±(r). The first two terms in S+(r) arise from the second-
order electron current, the next two are from the second-order convective current, the
fifth and sixth terms arise from the second-order Lorentz force, while the last term

arises from the second-order quantum pressure. The explicit expression for the drive

terms are given by

2

S ± r)'Sr'' + 9S8()+ #S (r)] (10)

with

9



S (r) = (4w/9)1/2rS (r)nsine2 Yoo(e)

+ (161/45)1/ 2 S 20(r)nsine2 Y20 (e)

-(2w/15)11/2 2 1 (r)ncose 2 [Y21 (e,*) - Y2 1 (0,0)1

+ i(21/15)1/2 S±2 1+(r)sine2 [Y2 1(e,,)+ Y2 _(e,*)]

-i(2r/15)11 ,22 (r)cose2 [Y2 2 (e,) + (e)] (Ia)

S =(r) (4/45)1/2 S 20 (r) n sine 1 Y 0 (e)

- (2w/15)1/2 S±21 (r)n Cose a- [Y 90 - Y 890)]

+ 1 (2w/15)1/2 S 2 1+(r) sin a2 - 1Y2 1(e.,) + Y2 -1 (e.*)

01/2 2 a 21 + (2-

- 1 (w/30) 11 2 2 (r) cos e2 - - Y2 2 (e (ib)

S ±(r) - - (2w/15)1/2 S (r. ±2,wl) n COS2 se Y21- y

w2 9 w1 2 sine a* 21(014)

- Y2 1 l(e,*)] + i(2w/15)1/2S (r,w 1 , ± w2 ) sin 2 sine1 a,

1/2sin la*

[Y2 1 (8,0) + Y2 _1 (e,*)] -i (w/30)1/2 S 2 2 (r) cos e2 sine a,

[Y2 2 (,-*) - Y2 _2 (e,*)] (I c)

where the different components S± (r) are given in Appendix B (Equations B.I). Also

explicit expressions for the second-~Uder electric field as well as the electron density and

velocity are contained in Appendix B.
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Similar expressions can be obtained for the dc rectified and second-harmonic

contributions.

2.3 THIRD-ORDER RESPONSE

To determine the third-order response of the electron gas to two nondegener-

ate laser beams oscillating at us1 and us2, insert the expressions for the linear and

quadratic electron density, drift velocity, and electric field into Equations I and 3 and
extract those terms that are oscillating at us1 and ws2 fundamental frequency generation.
This leads to the following equation for the third-order electron density response

oscillating at us1:

IV 2 - q 2 (u 1)JIn 3 (r~us 1 ) = -oB2 vT(r;us1 ) (12)

where i = I or 2 and the drive terms T(r;us1) are defined by

T(r;wl) -T (2)(r 'w2 + w-) + T (2)(r,us1 + 0) + T (2 )(r,-us2 +w)

+ T ( 2)(r, - w, + 2usi) + T( 1)(rW. w19 w, - ws2)

+ T( 1 )(r. W1. w19 - wl) (13a)

T(r; w2 ) - T (2 )(r,us1 - w_) + T(2)(r, w2 + 0) + T (2 )(r,-w I + ws+)

+ T (2)(r, - ws2 + 2ws2) + T(1)(r. ws29 "w* - us1)

+ T()(r. Wig w2' - w2) (1 3b)

where

T (2)urg1 + 0) - T(2)(r. w, + (,- wl)) + T(2)(r, wi. + (wa2 - w2))
(13c)

11



In Equation 13a, the first cascade term is given by

T(2) (rw 2+w-) = iw2 nl(rw2 )v 2 (r,w_) + iwn 2 (r,w_)v 1 (r,,w2 )

"+ no0 Vl(r,w2 )*vJ v2 [r,w_) + no[V2 (r,w,)vv 1 (rw 2 )

"+ e/mnnl(rw 2 )E 2 (rw_) + n2 (rw_)El(rw2 )]

"+ (2s 2 /3no)v[nl(r,,w2 )n 2 (rw_)]

(14a)

and the first direct term is given by

T(1)(r,w1 , 2,-w 2 ) = nl(rw1 ) [vl(r,w2 ) - v) vl(r, -w2) + c.c.I

"+ nl(r,w2 ) [vl(r, w2) - v) vl(r,wl)

"+ (vl(r,w1 )-v) v1 (r, -w2)]

"+ n (r.-y ) 1(y (r,-w) • y) v (r,.w)

"+ vl(rw 2 )-v)vl)r,wl)j (14b)

and similar expressions can be obtained for the other terms in Equations 13.

The linear responses n1 (r,wi), vl(r,wi) and EI(r,wi) are all enhanced at the surface

mode frequencies ws. The second-order responsesn 2 (r,w_), v2 (r,w_), and E2 (r.w_)

may be doubly enhanced for w, and w2 near ws. The first two terms in Equation 14a arise

from the electron current, the next two are from the convective current, the fifth and

sixth terms arise from the Lorentz force, while the last term arises from the second-

order quantum pressure. All the terms appearing in Equation 14b arise from the

convective current. The explicit expression for the drive terms can be worked out.

12



In Equations 13, the driving terms T(2) and T(1) come from the products of the

second-order fields and the linear fields as well as the triple products of the linear

fields. The driving terms T(2) and T(I) can be further broken down into self-action terms

and cross-action terms. The self-action term and cross-action term in T(1) at W, are T(l)

(rt,wlj,-wj) and T(l)(r,wlw 2 ,-w2 ), respectively. The self-action terms in T(2) are

Tand T((r,-wl+2w,), which come from the product of the self-rectified and

self-second-harmonic fields and linear fields. The cross-action terms in T(2) at w, are

T(2)(rw 2 +w_), T(2)(r,wl+(w2 -w2 )), and T (2)(r,-w 2 +w+), which are, respectively, from the

product of the difference frequency, cross-rectified, and sum frequency fields and linear

fields. The same classification is applied for T(2) and T( 1) at W2. The terms in T(2)

resulting from the products of the difference and sum frequency fields and linear fields

are also known as "coherent coupling" terms, since they are important for the coherent

waves.

Accordingly, all the third-order responses, which include the third-order

susceptibility, polarization, density, electric field, and velocity, can be classified from

their corresponding driving terms. That is, there will be self-action and cross-action

effects in third-order responses resulting from all possible combinations of second-order

fields and first-order fields as well as the triple products of the linear fields.

13



3.0 ELECTRODYNAMICS OF MICROPARTICLE COMPOSITES

In this section, the macroscopic linear and nonlinear electrodynamic responses

of a very dilute microparticle composite are investigated. The electrodynamic response

of the microparticle composite is determined by the total field generated in the entire

composite. For very dilute microparticle composites, each microparticle is in the far

field of all the others and the single scattering approximation is valid. Hence, the total

field of the composite is simply the sum of the far field generated by each particle.

The linear and nonlinear electrodynamic responses of the microparticle

composite are determined by the induced linear and nonlinear polarization of the

microparticles. The coherent part of the electrodynamic response is determined by the

phase-matched amplitude of the microparticles, viz. the "optical theorem" (or the

"Ewald-Oseen extinction theorem").

3.1 LINEAR ELECTRODYNAMICS

3.1.1 Scattering Amplitude in the Far Zone

In this section, the first-order electromagnetic fields in the radiation zone,

which are generated by a single microsphere are determined. A microsphere at point

e= (x,y',z' scatters the two incident beams to generate a first-order field E(1) (rw 1 ) at

the incident (wi) frequency at point r = (x,y,z), where r >> a in the radiation zone. The

electromagnetic field associated with an oscillating dipole of the microsphere located at

r, is given by

E(1)(r~r'.wt) = expli,(r.r')JfA1)(e',*')/jr-r'I (15)

where the phase #(rr) is given by

S- ktjr-r'I + k'r' (16)

and ki = [6h(wi)]1/ 2ui/c with i = I or 2, the integration is over the volume V' = 4%/3 a 3 of

the sphere at re. In the quasi-static limit where the radiation wavelength A >> a, the

14



phase factors in Equation 16 remain nearly constant within a given sphere. Hence, the

scattering amplitude in Equation 15 is given by

fG)(e,*') = k2 (nxP( 1 ))xn (17)

where n is the unit vector in the direction (r-r'), and the vector p1) is the first-order

dipole moment tensor induced by the laser light in a microparticle located at the origin,

cose' = (z-z')/r and tan4' = (y-y')/(x-x'). Note that the dipole moment tensor p1) can be

extracted from the electrostatic field in the near zone for a small scatter. For a

microsphere irradiated by laser beam at wi, the radiation-induced dipole moment is given

in Appendix A (Equation A.7). Finally, the scattering amplitude, fil)(e',*'), for the

electric field in the radiation zone, arising from a single microparticle is

f 1 (e',') = k 1e [cose sin* - sinl- cos#}

(1Sa)

f1)(e',,s) = k a3 P 1 ( 2) {e [cose 2Cos cos*-slne2 sine] - * coseasin*}

(08b)

where the incident frequency is at &i, and the polarization P(I)(wi) is defined in

Appendix A (Equation A.8).

The magnetic field components B ( )(r,r',wi) are then given by

B(s)(r.r',w1 ) = n x EMl)(r,r',w1 ) (19)

so that the total intensity 1s(r,rwi), for a single microparticle at r' is,

15



l(1)(r,r' wj) = (c/8w)lfýl)(e',,')12 /Ir-r'I2  (20)S1

3.1.2 Macroscopic Electromagnetic Fields and Intensities

In this section, the total linear electromagnetic fields and intensities arising
from a tenuous collection of microparticles randomly distributed in a passive linear

dielectric host are examined. In general, a collection of microparticles will scatter
radiation with random phase with respect to one another. The resultant total linear
electromagnetic field from a microparticle composite will be the sum of the coherent (or
averge) field and the incoherent (fluctuating) field (Ref. 13). The phase of the field will
fluctuate randomly for arbitrary directions, so that the volume-averaged (or ensemble-

averaged) incoherent field is zero. However, along a particular phase-matched (or
coherent) direction, the different particles all scatter in phase with one another and the
resultant average field is coherent. This coherent field will be discussed in

Section 3.1.2.1. The average intensity for a microparticle composite is the sum of the
coherent and incoherent intensities and will be examined in Section 3.1.2.2. A tenuous
microsphere composite with the particles sufficiently far apart so that they do affect

each other will be considered. Then, the far-field and single scattering approximations
are valid and the total field at a point r is the sum of the far field from each microsphere
located at point r', as depicted in Figure 1.

3.1.2.1 Coherent Field: Linear Dielectric Function. The linear coherent field at Wi is
given by the integral (or summation) of the far field of each sphere, which is given in

Equation 15, over the entire composite, i.e.,

E(= fvdr'E(.)(rr'*Wi) (21a)

f N dxf Y dy' dz' exp[*(r,r')]f.1)(e'#')/Ir-rI
L - Ly -7 LZ

(21b)
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where the composite is assumed to reside within a slab of dimensions L x Ly x Lz, where
L << LyLz and LyLz *=, but L remains finite and N is the microsphere number density.

The prefactors, which include the scattering amplitude fi and the propagator l/Ir-r'I
vary slowly with r' in comparison to the rapidly-varying exponential factor, exp[io(r,r')].

The concern is with the limiting case in which r >> L. To evaluate the integral for the

y'-, and z'-coordinate first for the slab, the method of steepest descents (Refs. 15,16) will

be used. The stationary phase point for the microsphere is located at

rs = (rs,es,*s). Thecoordinates

es = 8i (22a)

Os = 0 (22b)

and ei are the incident angles at wi"

Equations 22a and b indicate that the phase-matched direction for the linear

response is in the forward direction.

Then, the coherent field at w2 in Equation 21 is given by

E(1)(r,=) - efL 1 f) (() les.O) (23)c r~ 1  sine1  (e

where e is unit polarization vector of the coherent electric field at point r far outside

the slab and f = N4a 3 /3 is the volume fraction of microspheres. In Equation 23, the
forward scattering amplitude per unit volume fi results from evaluation of the integral in

Equation 21 at the stationary phase point and is given by

f l)( esO) - 2kP1) (24)
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This general relation of the linear coherent field given in Equation 23, which is embodied

in the forward scattering amplitude, is also called the "Optical Theorem" or the "Ewald-

Oseen extinction theorem."

If the microparticle composite of thickness L is replaced by a homogeneous

dielectric slab of same thickness with effective linear susceptibility x 1, then the electric

field at point r outside the slab is given by

E(r,wi) = 2wikiLxl(Wj)Ai / ch(wi)sinei (25)

where the wi, Ai amd ei are the incident freqi ency, field amplitude and angle,

respectively.

Equating Equations 25 and 23, the effective linear dielectric function or

susceptibility of the microparticle composite with volume fraction f is given by

c(wi) = £h(wi) + 4 wXl(w 1 ) (26a)

4 wx1 (w1 ) = 4w ch(wi) fP( 1 )(Wi) (26b)

where the microparticles are embedded in a passive linear dielectric material with the

dielectric constant being ch (wi)"

3.1.2.2 Total Intensity: Linear Scattering. The total intensity from a slab of

microparticle composite of thickness L is given by

1L

I(1)(r,w,) =N f dx' dy' • dx' I(1)(r'r',wj) (27)

where N is the microparticle number density and Is is given in Equation 20. The total

intensity can be decomposed into two parts, viz, the coherent and incoherent intensi-

ties. The coherent part is given by

18



= ')(r.w 1 ) C E~l)(r.w1 ) B(l)*(r,wi) o r (28a)

1 - k 2 Ip(1)(wi)I (28b)
sin 2e01 2 1

where

B(1) = r Ex(1) and E(1) is given in Equation 23. The incoherent part is given by

c f2

iG1) (r'wi) .- N ;.2 L r-r2 L I - r' 2 (29a)

where the x',y', and z' integrations can be easily evaluated, and the incoherent intensity

is given by

= fL 12 k 4a3 IP(j)(wi)1 2  (29b)

which is less than I percent of the incident intensity for volume fraction f < 10-4.

3.1.3 Numerical Results and Discussion

The microparticles to be considered in the numerical calculation are silver

spheres with radius a > 20 A, where the quantum size effect is not important (Ref. 14).

The background dielectric constant Lb and the plasma frequency Wp of the silver spheres

are, respectively, 5.578 and 3.8 eV. The damping constant v inside the silver sphere is

modified by the free path effect (Ref. 14) and is given by

VF (30)
a
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where vB = 0.01 wp is the bulk damping constant and VF is the Fermi velocity of the

electrons.

For comparison, the linear responses are plotted in Figure 2 for a single silver

sphere with a = 100 A in vacuum, which is irradiated by 0.3787 um laser light of I MW
intensity. The 0.3787 ipm laser light can excite the surface dipole mode of the

aforementioned silver sphere. Indeed, as shown in Figure 2(b), the electric field inside

the sphere is enhanced by the surface dipole resonant denominator D(ws), whose

magnitude is about 10, and is nearly w/2 out of the phase with respect to the incident

electric field. Figure 2(c) depicts the radial velocity throughout the microsphere.

In Figures 3 through 10, the linear dielectric properties of the microsphere

composites are shown. In particular, the calculations are done for the parameters

appropriated for silver in water or glass substrate. The enhancement near the surface
plasma mode of the spheres ise clearly shown in all the linear dielectric properties, e.g.,

Figures 7 through 10. The higher enhancement factors will appear in the second-order

and third-order nonlinear dielectric properties from the same local enhancement field.

All the nonlocal nature of the physical quantities will approach the local limit

for the large qja. In Figure 5 the particle size dependence of the linear dielectric

function of the microsphere composite is shown. The dielectric function has an

enhancement from the nonlocality of the small sphere limit and approaches the local
limits, which are indicated by the arrows in Figure 5, for large sphere limit. However,

for extremely small spheres the dielectric function decreases and approaches the pure
host limit. Note in Figure 5, the nonlocal nature is more pronounced for the smaller

damping parameter, i.e., v = 0.02 w p.

3.2 SUM AND DIFFERENCE FREQUENCY GENERATIONS

3.2.1 Scattering Amplitude and the Radiation in the Far Zone

In this section, the second-order electromagnetic fields in the radiation zone,

which are generated by a single microsphere are determined. A microsphere at point

r' = (xpy',z) scatters the two incident beams, to generate a second-order field

E (2) (r,_+) at the sum (w+) or difference (w-) frequency at point r = (x,yz), where r >> a
2
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Figure 2. Linear responses of a single silver sphere versus r/a, a = 100 A. The
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electric field is Eo = 0.92 x 102 stat V/cm.
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in the radiation zone. The electromagnetic field associated with an oscillating

quadrupole of the microsphere located at r', is given by

E(2) (r,r',w+) = exp[ iq(r,r' )If(2) (e ,4')/ r-r1' (31)S+

where the phase *(r,r') is given by

*(r,r') = k+lr-r'I + (k 1 _±k2 )-r' (32)

and k_+ = [h(w+_)] /2w±/c the integration is over the volume V' = 4t/3 a3 of the sphere at

r'. In the quasi-static limit where the radiation wavelength x >> a, the phase factors in

Equation 32 remain nearly constant within a given sphere. Hence, the scattering

amplitude in Equation 31 is given by

(e,*) = -i(k+ 3 /2) (nxQ(n)/3)xn (33)

where the vector Q(n) is defined by

Q V (n) = zQ n '34)

QV is the second-order quadrupole moment tensor induced by the laser light in a

microparticle located at the origin, cose' = (z-z)/r and tan*' = (y-y')/(x-x'). Note that the

quadrupole moment tensor Q can be extracted from the electrostatic field in the near

zone for a small scatter. For a microsphere irradiated by two laser beams oriented at an
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angle of e2 with respect to each other, the radiation-induced quadrupole moment tensor

is given by

0 0 Qxz

Q= 0 0 0 (35)

QZX 0 Qzz

where Q IA, = Q.. Explicit formulas for Q,,v are given in Appendix B (Equation B.17).

Finally, the scattering amplitude, f( 2 )(a; .'), for the electric field in the radiation

zone, arising from a single microparticle is

f_(2)(,'= 3ka5 [2wer+/(3ch(w+) + 2eb)],;[-sine sin2e'U 0/2

+ cose cos2e'cosJ•l I -*cose cosel sino'U21

(36)

Note that in the collinear and copolarized limit (e 2 = 1/2), the scattering amplitude has a

component only in the e-direction. The functions U t are dimensionless, are related to

weighed averages of the various components of the charge density over the sphere and

are defined in Appendix B. Numerical results for U20 as a function of particle sizes will

be discussed in Section 3.2.3.

The magnetic field components B(2) (r.r' ,w+) are then given by

B(2) (r.r',w+) - n x E(2) (rr',w+) (37)s

so that the total intensity I12) (rr' ,w+). for a single microparticle at e' is,
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I(2)(rr'.w+) = (c/8,)lf+(2)(e',o')1 2/Ir-r' 12 (38)

where Q(n) is defined in Equation 33.

3.2.2 Macroscopic Electromagnetic Fields and Intensities

In this section, the total second-order electromagnetic fields and intensities
arising from a tenuous collection of microparticles randomly distributed in a passive
linear dielectric host are examined. In general, a collection of microparticles will
scatter radiation with random phase with respect to one another. The resultant total

second-order electromagnetic field from a microparticle composite will be the sum of
the coherent (or averge) field and the incoherent (fluctuating) field (Ref. 13). The phase
of the field will fluctuate randomly for arbitrary directions, so that the volume-averaged
(or ensemble-averaged) incoherent field is zero. However, along a particular phase-
matched (or coherent) direction, the different particles all scatter in phase with one

another and the resultant average field is coherent. This coherent field will be discussed
in Section 3.2.2.1. The average intensity for a microparticle composite is the sum of the
coherent and incoherent intensities and will be examined in Section 3.2.2.2. A tenuous
microsphere composite with the particles sufficiently far apart so that they do affect

each other will be considered. Then, the far-field and single scattering approximations

are valid and the total field at a point r is the sum of the far field from each microsphere
located at point r', as depicted in Figure 1.

3.2.2.1 Coherent Field: Coherent Generation. The second-order coherent field at w+
is given by the integral (or summation) of the far field of each sphere, which is given in

Equation 31, over the entire composite, i.e.,

E() fdr'E(2)(r~rw±) (39a)

1 1
~L ~Ly 2N f, dx'f1 - dyfl dz' expji,(r.r')If( 2 )(e',,')/Ir-r'I
L Ly Lz (39b)
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where the composite is assumed to reside within a slab of dimensions L x Ly x Lz, where

L << Ly,Lz and LyLz .- , but L remains finite and N is the microsphere number density.

The prefactors, which include the scattering amplitude f+(2) and the propagator 1/Ir-r'l
vary slowly with r' in comparison to the rapidly-varying exponential factor, exp[io(r,r')].

The concern is with the limiting case in which r >> L. To evaluate the integral for the

y'-, and z'-coordinate first for the slab, the method of steepest descents will be used

(Ref. 16). The stationary phase point for the microsphere is located at

r+ = (r+,e+,*+). The coordinates

r+ = jx-x' I/sne+ (40a)

*+ = 0 (40b)

cose+ = _k2 cose2 /k+ (40c)

and at are the coherent angles at wt. An examination of Equation 39 reveals that there is

always a stationary phase point for the sum-frequency (w+) wave or the difference-

frequency (w_) wave, if k± > k2 cose2 . Thereby it restricts the range of angles in which

the second laser can be aligned for coherent sum or difference frequency wave

generation.

The last integral over the x'-coordinate in Equation 39b is over a finite region

and will give rise to the phase-matching term. Then, the coherent field in Equation 38 is

given by

(2)(r.w+) +fLjO(A+LI2)f('2)(e2'eO)'ksne expf1A+L/2 + 1,±(r)]c + ~ s~n+ +(41)

where the unit polarization vector of the coherent electric field at point r far outside the

slab is - xcose± - zslne+ I jo(z) = sinz/z is the usual phase-matching term and

f = N4va /3 is the volume fraction of microspheres. In Equation 41, the scattering

amplitude per unit volume is evaluated at the stationary phase point and is given by

34



f2) (02 0eo a 1eka2Icose cos2e UU± +2/3sine sin2e UU± ]/(3chw)2b

(42)

while the phase of the wave *±(r) is

i+(r) = k+fsine+x + cose+z] (43)

The phase factor A±L/2 arises from phase mismatch between the polarization driven by
incident waves and nonlinear wave, which is given by

A+ = k± ± k2 slne2 - k+sine (44)

An examination of the scattering amplitude evaluated at the stationary phase point
reveals that there is no coherent response if the lasers are collinear and copolarized, that

is, e2 = v/2 = e±.

3.2.2.2 Total Intensity: Seconkd-Order Scattering. The total intensity for the sum and

difference frequency generation from a slab of microparticle composite of thickness L is
given by

1 (2) (r,w+) -, ½w~ (5(w) = LNdx' •.dy' •.dx' IS 2(r r'.+ (45)

-- L-

where N is the microparticle number density and Is is given in Equation 38. The total
intensity can be decomposed into two parts, viz, the coherent and incoherent intensi-
ties. The coherent part is given by
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142)(r~w+) = C- E(2)(r,w+) - B (2(r. (46a)

f2L2 9wc jk+1 4 a4e 21r+1 2+2
= f -L+ t(e2) Jjo(a+L/2)2 (46b)-8 I3eh(w±)+2cbI 2 1ce)I~~±,

where

lc(e 2 ) = Icose 2cos2e+U2 1 + 2/3sine2 sin2e+U20± 2  (46c)

B(2) = r E (2) and E(2) is given in Equation 41. The incoherent part is given by

1 L

1(2)(L- Nf= I dx dy' •=dz'-7 L Ir-r1 2  
(47a)

where the x',yl, and z' integrations can be easily evaluated, and the incoherent intensity

is given by

(2) 3 2c I k+16a2e+1r+
131h(w+) + 2 1b + (47b)

where
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_+(e2) = cos 2 2Ul + 8/9 sin2e o2 (47c)

3.2.3 Numerical Results and Discussion

The microparticles to be considered in the numerical calculation are silver

spheres with radius a > 20 A, where the quantum size effect is not important (Ref. 14).
All the parameters for silver spheres are given in Section 3.1.3.

Figures 11 through 13 depict the second-order responses of the silver sphere
for difference and sum frequency generation. To illustrate the surface enhanced nature,

the frequency of the first incident laser light is always tuned to the surface dipole
resonant frequency, viz., wI = wS, in order to maximize the enhancement of the drive

terms for the second-order fields. The frequency of the second laser light is tuned to the
vicinity of wS, to optimize the second enhancement factor in the drive terms. Also, the

second laser light may be tuned to the frequency w2 = wS - wq. The intensity of both
incident light beams are I MW/cm2

All the responses in Figures I through 13 for the small difference frequency
and the sum frequency at the surface quadrupole resonance are well screened, since the
frequencies are below the plasma frequency. And the responses in Figures I I through 13

for the sum frequency generation near 2wS are highly oscillatory.

For quadrupole (L = 2) responses, the total charge is zero and the acoustic

condition can be imposed as an additional boundary condition (ABC). However, for
monopole (z = 0) responses, one must ensure the charge conservation and the ABC is the

charge neutrality instead of the acoustic condition. Thus, the acoustic condition may be
violated, which implies an electron flow across the boundary of the sphere.

In Figure 13, the acoustic condition is indeed violated for i = 0. For the
difference frequency generation shown in Figure 13(a), the radial velocity at the surface

is nearly equal to the maximum velocity inside the sphere, where v/w. - 1. For the sum
frequency generation near 2wS shown in Figure 13(c), the radial velocity at the surface is

nearly zero, where v/w+ - 0.01. Therefore, the ratio of the radial velocity at the surface
to the maximum velocity inside the sphere is on the order of v/wt for i = 0. Also, the
I = 2 second-order responses in Figures I I(e), 12(e), and 13(e) are indeed enhanced with
respect to the s = 0 counterparts in Figures I 1(b), 12(b), and 13(b).
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Finally, the coherent and incoherent intensity for a slab of tenuous silver

microsphere composite embedded in a dispersive host wil be calculated. The configura-

tion is shown in Figure 1. The dispersive host is chosen to be an artificial glass. The

first incident frequency wI is chosen to be the surface dipole frequency W. of a silver

sphere in the glass host, viz., wi = ws = 0.4304 pm with ch(ws) = 2.15. The second incident

frequency w2 is either tuned to the vicinity of ws, viz., w2 = s - 0.05wp = 0.4608 pm with

ch(w2) = 2.14. Or the frequency w2 may be the difference frequency between the surface

dipole and quadrupole resonances, viz., w2 = wq - Ws, with wq ,t 0.4 jim and ch(w2) = 1.9.
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1ýr-00r) 0 r/
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Figure 12. Second-order dimensionless radial electric field z- + (r) versus r/a,
a 100 L Same configuration treated in Figure .' The units E2 0 for

r are 2.3 stat V/cm.
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The coherent intensity Ic of the sum (w+) or difference (w-.) frequency

generation peaks strongly near the perfect phase matching, viz., A+ L < 1, where A+: is

defined in Equation 44 and L is the slab thickness. The phase mismatch A+ defines a

coherent length Lcoh = 1 /A.. Only for L < Lcoh, the coherent intensity is significant and

increases more or less quadraticly with L. For a few millimeters thick silver

microsphere composite, the sufficently long coherent length Lcoh is only achievable

under the perfect phase matching, viz., At = 0.

In order to have perfect phase matching, the host dielectric constant ch at the

sum (difference) frequency must be less (greater) than ch(N1 and th(w2). The incident

angle 02 Is determined by th(w±) via the perfect phase matching condition. The angle 82
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will then set the coherent angle 0t through the stationary condition given in

Equation 40c. It is no loss of generality to restrict the values of 82 to the range between

0* and 900, since the range 900 <02 s21800 is just the mirror image of the former range

with respect to the x-y plane. The physical values of 02 are going to limit the possible

choices of the host materials, viz., £h(wt). A slab of silver microsphere composite to be

considered consists of radius a = 100 , thickness L = 1 mm and volume fraction

f = 10-4. Figure 14 shows the dependence of the incident and coherent angles on Eh(w+).

For the sum frequency generation near 2,s or at wq, the possible choices of Eh(w+) are

respectively in the range of (1.08, 2.14) or (1.8, 2.13). The difference frequency

generation at w_ = 0.05 wp requires that 2.3 < Eh(w-) < 900.

Figure 15 shows the dependence of the coherent and incoherent intensities

upon ch(w+). The reduced coherent and incoherent intensities are i u 0 12 and

1-(a 2 )/lu 0 12 , respectively. The conversion factor to the corresponding absolute

intensity is given in the figure caption for each case. The coherent intensity of the sum

frequency generation near 2ws is about I W/cm 2 , which is 10 dB above the corresponding

incoherent intensity for 1.2 5 ch(w+) 5 2. 1. The coherent intensity of the sum frequency

generation at Wq is 0.05-0.2 W/cm ý which is 27 to 30 dB above the incoherent intensity

for 1.75 s ch(wq) < 2.1. The coherent intensity at the difference frequency at w- = 0.05 wp

is only 1-10 vW/cm2, which is 40 to 50 dB above the incoherent counterpart for

ch(w_) > 2.4. For the sum frequency generation, the incoherent intensity may still be

detectable. However, for the difference frequency generation, only the coherent

intensity can be observed with ease.

In Figures 16(a) and 16(b), the size-dependence of the dimensionless

function U 0 in the quadrupole moments for dc rectified (U)+ 20 20) and second-. -..rmonic

(U20 ) generation for the case of a single intense laser irradiated on a silver microsphere

composite are shown. Both figures show increasing quadrupole moments for decreasing

particle sizes and vanishing quadrupole moments for extremely small spheres. These are

the similar size-dependent characteristics shown in Figure 5 for the linear dielectric

functions. However, the quasi-hydrodynamic theory adopted here breaks down for

extremely small particles, where the quantum effect is important and should be included

with care.
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3.3 THIRD-ORDER SUSCEPTIBILITY IN THE FREQUENCY DOMAIN

For the third-order susceptibility, both the self-action effect of the laser

fields and the cross-action effect between the laser fields at the degenerate and

nondegenerate frequencies will be considered.

The self-action, which is described in terms of the intensity-dependent

nonlinear dielectric function, is responsible for the self-phase modulation and self-

focusing of a given laser field. They are important effects for a single laser field as well
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Figure 13. Second-order dimensionless radial velocity xmN(r) versus r/a,

a = 100 AL Same configuration treated in Figure 2.

43



7.5

(d) 1=2, m =0; 5.0o(d) '
W_ = 0.01 w (unit 2.5 ;Im-

V20 = 6.4 P103 cm/sec). 1.2o1, 0 ?,a

-2.5 Re

-5.0

0.8 _(e)

0.6
(e) i = 2, m = 0; 0.4
W+ = W (unit i.2001 0.2•,

V20 = 3.5 x 103 cm/sec). 0 0.a-0.2 •. ., IM l

1.0

(f) I = 2, m = 0; V1-A2o r, o ,r.
W+ = 2U s - 0.01 " -1.0 -Im

(unit V2 0 = L.7 xlq•4 cm/sec).
-2.0

-3.0O I I I J
0 0.2 0.4 0.6 0.8 1.0

Figure 13. (Concluded)

as for phase conjugation and coherent two-wave mixing. The cross-effect is described by

the cross-intensity-dependent nonlinear dielectric function and coherent coupling

coefficient which are responsible for the cross-phase modulation and coherent coupling

between the laser fields. They are important effects in the phase conjugation and

coherent two-wave mixing. In particular, the coherent coupling coefficient is the main

mechanism in the coherent two-wave mixing.

The electrodynamic problem has been treated globally, calculating the dipole

moment induced upon the sphere by the applied field, and thus obtaining directly the

surface-plasma resonance within the quasi-hydrodynamic formalism. Therefore, if the

incident frequency is near the surface plasma resonant frequency of the microparticles,

there will be local field enhancement of the third-order susceptibility just as the theory

states.
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3.3.1 Third-Order Susceptibility in the Frequency Domain

3.3.1.1 Sel•-Action and Cross Action Effects. For self-action, consider a metallic

sphere composite, which is irradiated by an intense laser beam of frquency wit amplituae

Ai, propagating along the x-axis and polarized in the z-direction. The equation, which
governs the induced third-order density fluctuation at wi(rwi) is Equation 12.
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The induced third-order fields are given as follows. Inside the sphere, the
density and electrostatic potential are given by

n3 (r,wt) =n 3 ,1 olr,wt) Ylo(e) + n3 ,3 0 (r,w 1 ) Y3ole) (48)

* 3 (rwt) - *3 ,1 0 (r, 1 ) Ylo(e) + *3 ,3 0 (riws)Y 3 0 (e) (49)
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Outside the sphere, the electrostatic potential is given by

u (3) (W1) O({j)
*3 (r,,w) - r2 cose + rU4 Y3 0 (6) (50)

where u(3)(mi) and o(wi) are the induced third-order dipole and octupole moments of the

sphere. The induced third-order dipole moment is given in Appendix C (Equation C.10).
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The third-order octupole moment (4 = 3) is much smaller compared to the

third-order dipole moment (L = 1) for spheres in the Rayleigh limit. Thus, the third-order

octupole moment contribution to the third-order susceptibility is negligible.

For a very dilute metallic sphere composite slab, the third-order coherent field

at point r outside the slab generated by microparticle third-order polarization at wi is

given by

Ec(3)(rwi) = fL2wiki{-esinePo (3)NO) (51)

where f is the volume, L is the thickness of the slab, and p(3) (wi) is given in

Appendix C (Equation C. 11).

The corresponding third-order susceptibility of the composite is given by

x(3) (W;jW9W) = Xo(3)h() f p(3) (wi I
=Z 0 c h(w. P ) i'l D1(wt)1D1 (w j) 2  (52)

where the dimensionless function Pi, Im(wi) is given in Appendix C (Equation C.10), and

the local field enhancement factors are clearly given.

For a silver sphere of 100 A in radius embedded in a host with £h = 1, one has

-(3) 3.59 x 10-10 (53)

After lengthy numerical integration, one obtains at the surface plasma frequency wI

x(3)( (- 5.3 + 1.81) x 10-9 esu/sphere (54a)
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for v = 0.02 wp, and

x= (-( 8.3 + 1 4.1) x 10-12 esu/sphere (54b)

for v = 0.1 wp, respectively. The experimental value (Ref. 18) for single silver sphere is

2.4 x 10-9 esu, which was measured in the degenerate four-wave mixing configuration,

and is fairly close to the value given in Equation 54a.

The degenerate third-order susceptibility for a very dilute silver sphere

composite with volume fraction f is given by f x(3(Ws)," where the numerical values of

x(3)(ws) are given by Equations 54.

For cross-action effects, consider the metallic microsphere composite, which

is irradiated by two intense laser beams of frequencies w1 and w2 , electric field

amplitudes A1 and A2 , both propagating along the x-axis and linearly polarized in the

z-direction. Then the third-order susceptibility under this configuration is given by

X(3) (3) 2 p(3) ( 0 1(t1
Xzzzz(wi;wi"wj-wj) = ch(wi) f Xo J1P1 S10(wi) 101(Wj)l(

where the i = j term is the self-action contribution as given by Equation 52 and the i j

term is the cross-action contribution.

According to the classification discussed in Section 2.3, the third-order

susceptibility in Equation 55 for i = I can be cast into the following groups,

ZZZZ (1 ) = (ZZZZw1;w1w23w2) + 1

+ X(1)(t 1 1_w 1.,-_ 1 ) (56)XZZZZ

which are the coherent coupling, cross-phase-modulation and self-phase modulation parts

of the susceptibility, respectively.

50



In Equation 56, the coherent coupling part is given by

x(3C) = (3) .+ (3) wzzzz' 1;w1'w2'-w2) Xzzzz(w1l;w2 + w-) + zzzz• 1;-w2+w+)

(57a)

which comes from the cascading sum and difference frequency effects.

In Equation 56, the cross-phase modulation part is given by

x (3X) ,(3) (3)
wl;wlw 2  -w2 )'=xzzzz(wl;wl+ 12-2 zzzz (wlww29-w2)

(57b)

which comes from the cascading cross-rectified effect and direct third-order contribu-
tion.

In Equation 56, the self-phase modulation part is given by

x(3S) W (3) W;w+ (W-)) + X (3) 'w;-w• +2w,)

+ X(3) iW ;WlW,-Wl) (57c)

which comes from the cascading self-rectified and self-second-harmonic effect and the
direct third-order contribution.

3.3.1.2 Polarization Effect. For polarization effect, consider the more general
situation discussed in Section 2.0 (Fig. 1). There are an elliptically polarized w, wave
with polarization vector eI = y+nz and a linearly polarized w2 wave with polarization
vector e2 = z incident normal to the microparticle composite, i.e., 02 = w/2. The
normal direction of the composite or the propagation direction of both waves is in the
x-direction.
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For a very dilute metallic sphere composite slab, the third-order coherent field

at point r outside the slab generated by microparticle third-order polarization at Wi is

given by

Ec(3)(rw) = fL2wlkl{-enslnePo(3)(wl) + (;coseslno-*coso)3)(Pl)}
(58a)

Ec(3)(rw 2 ) = fL2itk 2 {-estneP (3)( 2)1 (58b)

where f is the volume, L is the thickness of the slab, and p( 3 ) (wi) is given in

Appendix C (by Equation C.1 1).

Then the nonvanishing components of the third-order susceptibility are given

by

Xzzzz(wt;wipwi,-w) = Eh(wt) f Xo p3 2

0 1,10' ' D1(wt) IDi(wi)I (59a)

for self-action contribution and

Xzzzz(wl;witwj,1dj) + Xzyzy(wi;wt.wj,-wj) = ch(w,) f Xo) p3J10(wi)

x 1 2 (.59b)

) 3 (3) (j1

Xyzzy(wt;wi.wjI-wj) = th(wi) f Xo 1 P jl( Ol(wt) ID,(w,, )1I (590

with j * i for cross-action contribution, and i = I or 2.

The third-order susceptibility in Equation 58 can also be grouped into the

coherent coupling, cross-phase-modulation and self-phase modulation parts as was done

for Equation 5.
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3.3.2 Time-Dependence of Third-Order Susceptibility and Polarization

In Section 3.3.1, the third-order susceptibility of metallic microsphere

composites in the frequency domain, which is convenient to use in the case of

monochromatic or quasi-monochromatic light beams was calculated. However, in the

case of ultrashort light pulses, the third-order susceptibility in the time domain will be

more useful.

The more general time-dependent third-order nonlinear polarization is given by

p()() o dtI f" dt2 f- dt3 X(3) (tl~t2

P03)(t) = 0 o f f 3  2 9t3 ) E(t-tl) E(t-t 2 ) E(t-t 3 )
0 0 o (60)

According to Equation 60 the time-dependent third-order susceptibility for

metallic microsphere composites can be obtained from the Fourier transform of the

frequency-dependent third-order susceptibility in Section 3.3.1 and is given by

;(3(tj't1tdwi f¢w i-3)(.;...90 .) (0 -i¢witl+ wt+i

(61)

where

In Section 2.3, the different classification of the third-order responses was

discussed. Here only the time-dependent third-order polarization for coherent coupling

terms is worked out explicitly. If the metallic microsphere composite is irradiated by

the two Gaussian light pulses at carrier frequencies uI and (02 with pulse full widths T,
and T2 , and probe delay time !D, the time-dependent third-order susceptibility for-the

metallic microsphere composite can be obtained from Fourier transformation of

Equations 59.

For a linearly polarized probe wave at w2 , the coherent coupling parts of the

time-dependent third-order susceptibility are given by
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p.(3)(3)t(3C) (ti~2t (3) r' I,I0(w2)t2
"(3C)(t 1 ,t 2 ,tI) + x ) £hW2 f {~)' 3 ~( 2 tXzzzz• 1J9j zyz X ZYYJ Y Ch(wd2 fXo L dl(Ws)

+ i p,(3 ) e(t 2 ) Vst2
+ 1,10 ( X 2vsdl(Ws) 3

(62a)

yzyz 11t 2 1t1) = 2h(w} f 0 dj(( 2) 1

e(t 2 ) vs t 2
x e (62b)2Vsdl(ws) 3

where e(t 2 ) is a step function, the demominator is given by

d l (ws) =Re Di(w.s) I (63a)

the inverse of intrinsic decay time is given by

dIm(-s)
Va = IDl(Ws) (63b)

and ti and t 2 are, respectively, the time coordinate for the pump and probe waves. In
Equation 61, the P-functions are given by

p '(3 . 2) ! 1,,(a'w2)12 (q a) / a2 12(q 2 a) (64a)
111(3 ) (.))22

P!,(al 2 ! Lj*s(a'w2) (64b)

which are the same homogeneous and inhomogeneous factors shown in Appendix C

(Equations C.10).

For simplicity, it is assumed that both pump (wI) and probe (w2 ) waves are

propagating along the x-axist i.e., 02 = v/2. The envelopes of two pulses are chosen to be



1/2

Al(x,t 1 ) = 2 c exp [- (tt- v 4TJ
(65)

where Ii and vi are the light intensity and phase velocity in the host medium, and Ti is
the pulse full width, i = I or 2.

Then the total electric field for the two-wave mixing can be written as
i~it + ý-tw2 (t-T D)

E(rt) = elAl(x,t) e- + e 2A2 (xt - TD) e + c.c.

(66)

where CD is the probe delay time.

Substituting Equations 62, 65 and 66 into Equation 60, the coherent parts of
the time-dependent third-order polarization for the probe wave at W2 are given by

p(3c)(t) = eh(w2) f Xo3 ) e-,,t 4/_1 /2 2 12
1{H(veT e) (3) I.•p,,(3) /

V O e d0(3,TD) dl(es) P' ( 2) + I P(v} ) P (wd)

(67)

where the inverse of effective decay time for short pulses with relative delay is given by

S= Ve - T (68a)
T2

the overlap function is given by

octi)) - ,xP[-(t-rA- 2 / 2T2 _ (t-x/v1 ) 2 /4T2]
(68b)

and the dimensionless polarization prefactors for the homogeneous and inhomogeneous
contributions are given by

55



H(veTe) = 2T2 [1 - VeP(veTe)] (68c)

P(veTe) = is Te exp (v2Te) erfC(2eT (68d)
e *e e) e ve e)

with the effective pulse width Tel which is defined by

1= 1! 2 (68e)
= T2 2 +T 2

Te 2 1

In Equation 66, the subscript m = I or 0 corresponds to the y- or .z-component of the
time-dependent third-order polarization of the probe wave at w2 .

3.4 SPECTRAL RANGE AND RESPONSE TIME

The spectral range of the nonlinear third-order susceptibility of the micro-
particle composites is determined by the influential range of the local field enhancement
factor. This can be easily determined by the FWHM of the enhancement factor. For
silver microsphere composites from Figures 7 and 8, the spectral range is between

0.40 Urm and 0.44 um. For gold microsphere composites, there is a smaller enhancement
factor and larger spectral range because of gold' larger material intrinsic damping
fitting parameter as compared to silver'.

The response times of the microparticle composite can be read out from their
time-dependent polarization given in Equation 67. The response time is the effective

decay time (1/e) in the equation, which is determined by the intrinsic decay time (i/vs)

of the microparticles as well as the ratio of the probe delay time (rD) to its pulse width
(T2 ). The intrinsic decay times for the parameters used in Figures 3 through 10, are 20 fs
and 5 fs for v = 0.02 Wp and v = 0.1 Wp. respectively. These intrinsic decay times are

typical of the electronic nonlinearity.
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3.5 SATURATION CHARACTERISTICS

In a real material the optical nonlinearity cannot grow without limit and many

materials will permit nonlinear changes only in a refractive index that saturates quite

rapidly with power. Saturation often limits refractive index changes to an upper limit of

0.1 but apparently 0.001 is fairly common with a lower limit being typically 0.0001.

In this theory the nonlinear electrodynamics of microparticles is developed in

terms of perturbation expansion. The saturation will set in if the expansion parameter is

approaching unity.

From the calculated perturbed density, electric field or other fields, the

expansion parameter can be easily extracted. Then, by equating the expansion parameter

to unity, the saturation field and intensity for the nonlinear electrodynamics of the

microparticles can be obtained.

Comparison of the perturbed density given in Appendices A, B and C (by

Equations A.2, B.7 and C.6) shows that the following order of magnitude relationship

exists between the second-order nonlinear density and the first-order linear density and

the nonlinear density of successive orders

"nn+_ n 3 n2
nn n 2 = n10 Ai/Esat (69)

where

E m2 3eqTF _01(w1 ) (70)Esat = i- D(t) (qrTF rs)3 ba

with Ai and DI(wi) are the electric field amplitude and the resonant denominator of the

incident light. In Equation 70, rs is a widely used measure of the electron density, and

defined as the radius of a sphere whose volume is equal to the volume per free (or

conduction) electron. Note that the saturation electric field given in Equation 70 is

reduced by the surface plasma resonant effect, viz. DiGoi), as well as the background
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dielectric constant Eb and is enhanced by the Thomas-Fermi screening effect, viz. the

inverse of the Thomas-Fermi screening length qTF"

The saturation fields for the parameters used in Figures 3 through 10, are 5.1

and 49.6 k statvolts per centimeter, which correspond to the saturation intensities, being

3.0 and 200 GW/cm2 for silver spheres with v = 0.02 wp and 0.1 wp, respectively.
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4.0 EXPERIMENTAL RESULTS

4.1 PHASE CONJUGATION EXPERIMENTS

4.1.1 Phase Conjugation in CS2

4.1.1.1 Experimental Apparatus. Phase conjuk;ation in CS2 was studied experimentally

utilizing the four wave mixing experimental system shown in Figure 17. A passively

mode locked Nd:YAG oscillator produced a train of 8 to 10 pulses, with a pulse duration

of 25 ps in a TEM0 0 transverse mode. A single pulse was selected out of the pulse train

and amplified through two single pass amplification stages. Between the two amplifiers,

the beam was expanded by a factor of 3 by means of an inverted telescope, to increase

the amplification and to reduce the divergence of the beam. The amplified pulse was

frequency doubled to 532 nm, resulting in a single picosecond pulse with a maximum

energy of 15 mJ, which corresponds to a peak power of - 600 MW. Vertical polarization

of the frequency doubled pulses was ensured by a polarizing beam splitter. Beam splitter

BSl (R = 0.15) was used to create the probe beam while beam splitter BS 2 (R = 0.50)

reflects a small portion of the probe pulse into a reference pulse, Ir* The reference pulse

is reflected back to BS2 by mirror M8 , whose reflectivity was chosen to meet

experimental requirements. The probe beam traverses the sample at an angle of 6° with

the pump beam If. The temporal overlap was adjusted by the variable delay line

consisting of mirrors M3 through M5. The backward pump beam Ib was created by

retroreflection of If by mirror MI in close contact with the sample cell to ensure a

maximum temporal overlap of the pulses within the nonlinear medium. The 0.55-mm

thickness of the cell wall added to the retroreflection setup an inherent delay of 3 ps

between the two pump pulses. This delay is much smaller than the pulse width and the

experimentally determined coherence length of the pulses, which was 14 ps. In some

experiments a special cell was used, the rear end of which was a mirror. This cell was,

however, more difficult to handle and did not improve the maxiumum attainable phase-

conjugate reflectivity. The CS2 was HPLC-grade (glass distilled and filtered) and was

contained in quartz spectroscopic cells with 1-, 2- or 10-mm optical path lengths. The

diameter of the pump beams in the sample cell was 3 mm. Some of the experiments

were performed focusing the probe beam into the sample cell. The phase conjugated

beam Ic retraced the path of the probe and was detected by a fast photodiode (ITT

F4000). The intensity was attenuated by three glass slides (G) which could be replaced by
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mirrors when necessary. The reference pulse is detected by the same photo diode and

precedes the conjugate pulse by 7 ns. Both pulses were measured using a Tektronix

500 MHz storage oscilloscope. The detection system was calibrated by placing mirror

MR in the path of the probe beam. Pulse energies were measured by a pyroelectric

energymeter (Laser Precision RJ7200).

IR, OTOIOOE

IG M

IG2

CICE L lLA

L

I PULSE ETALON
M1 SELECTOR

DYE C.L

Figure 17. Experimental setup for the production of phase conjugation by
degenerate four-wave mixing of picosecond pulses. The backward pump
pulse is produced by retroreflection of the forward pump beam. M:
mirror; D: diaphragm; SHG: second harmonic generator; If: forward pump
beam; lý: probe beam; Ic: phase conjugated beam; Ir: reference beam.

4.1.1.2 Expeirimental Results and Discussion. Using the experimental system

described in the previous section, phase conjugate reflectivity was measured as a

function of pulse energy for different values of probe to pump pulse fluence Fpr/Ff, for

different ratios of the two pump pulse energies Ef/Eb and for different cell lengths L.

Also, the presence of stimulated Brillouin scattering and whole beam self-focusing of the

pump pulses were checked. Both of these nonlinear effects were found to be negligible.

In an attempt to detect two-photon absorption in CS2, the transmission of picosecond
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pulses was measured as a function of their energy. However no significant energy

dependence of the transmission could be detected up to an energy of 5 mJ per pulse.

In the retroreflection setup, the maximum interaction length of the two pump

beams is limited to one half of the pulse length, so it is advantageous to minimize wasted

overlap.

In the first experiment a specially designed cell, 2-mm long, with the rear

surface consisting of a dielectric mirror was used. Using this cell, the region of temporal

overlapping of the two pump beams in the CS2 was increased. Figure 18 shows a typical

result for reflectivity versus pump pulse energy, using the special designed cell. The

ratio of pump to probe pulse energy was 14. The decrease in the slope of the reflectivity

versus energy was accompanied by a decrease in the quality of the phase conjugated

beam, which was attributed to small-scale self-focusing; the pump pulse seems to break

up in bright and dark regions, and this same distorted profile is transferred to the phase

conjugate beam. The power density at which saturation takes place is about I GW/cm 2,

although theory predicts a critical power threshold for macroscopic self-focusing in CS2

at 105 W. The short optical path length of the sample cell causes the self-focusing to

occur outside the cell. In this case there is no change into the amplitude profile of the

beam inside the cell, only a change in the phase profile, i.e., the shape of the wavefronts.

According to Akhmanov a 1-mm cell containing a Kerr like medium acts as a thin lens

with focal length zf, given by Reference 16:

2
Z ~wo (1

zf = 4 1on2L (71)

where w0 is the I/e beam radius at the cell entrance, 10 is the intensity at the beam

center, n 2 the nonlinear refractive index and L the cell length. At a power level

I0= 1 GW/cm 2 , w0 = 3 mm and L = 1 mm, zf equals 5 m in the case of CS 2 . This shows

that the short interaction region in picosecond FWHM, permitting the use of a short

sample cell, reduces the effects of macroscopic or whole beam self-focusing.
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Figure 18. Phase-conjugate reflectivity of CS 2 in a 2-mm cell versus the pump
energy in the forward pump beam, using a sample cell with
retroreflection mirror within the sample. The pump/probe pulse energy
ratio is 14:1. The curve clearly indicates the negative deviation from a
square dependence of the reflectivity on the pump energy at high
energies and is typical for most experiments we performed.

In order to determine the influence of a difference in energy of the forward

and backward pump pulses, the conjugate reflectivity versus pump pulse energy was
measured using a retroreflector with a reflectivity less than unity. Figure 19 shows
reflectivity versus reduced energy curves for three different values of the backward to

forward pun-p pulse energy ratio Eb/Ef. Taking into account the Fresnel losses at the
sample cell window, the following values of Eb/Ef were measured: 0.91, 0.71 and 0.50.
Reduced pump energy Er is defined as the geometric mean of the forward and backward
pump pulse energies Ef and Eb Er = -" Examination of the plot in Figure 19 makes

evident the sharp decrease in efficiency with the increasing energy difference between
forward and backward pump pulses. The solid lines represent the theoretical curves
obtained using the model described in Reference 16. The wave vector k of an
electromagnetic field depends on the intensity in a nonlinear medium since the refractive
index is dependent on the electromagnetic field strength. Therefore, for two
counterpropagating fields with identical vacuum wave vectors, kf and kb, within a
nonlinear medium, kf + kb will not be equal to zero, resulting in a phase mismatch of the
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Figure 19. Phase conjugate reflectivity of CS 2 in a 2-mm sample cell versus the
reduced pump energy Er, for three different values of the ratio of
backward to forward pump pulse energy Eb/Ef: (a) 0.91, (o) 0.7 1,
(A) 0.50. The solid lines are calculated curves, assuming a l/e beam
radius of 1.5 mm (see text). The ratio of forward pump pulse energy to
probe pulse energy was 14:1.

four wave mixing process. If, however, the vacuum intensities are equal, then

kf + kb = 0, and there should be no dephasing. The mismatch can be calculated as a

function of the energy ratio r and the forward pump pulse intensity If, analogous to

Reference 17:

IAklI = = + k x(3)(1-r) If (72)

Using the nonlinear coupling coefficient K:
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if and lb being the intensities of forward and backward pump beam, the expression

(Equation 72) can be written as following:

J~kI = 9. (r1) f (74)
ir-

Using Equation 74, the phase conjugate reflectivity, R, with asymmetric pump beams can

be calculated as follows:

R = f sin 2 (KL/l+p 2 ) 1 (75)

Cos 2 (KL/I+p ) + p

where p = -f (1-R/A/r) and L is the interaction length of the pump and probe pulses

inside the nonlinear medium. The theoretical curves in Figure 19 were calculated using

the value of x) = 2 x 10-31 (SI units), leading to the following expression for the
coupling constant in CS2 :

S= 0.21 If (MW/cm 2 m) (76)

The curves were calculated assuming a beam diameter of 3 mm. For the ratio

Eb/Ef = 0.55 the theory predicts the maximum reflectivity very well. The different

maximum positions of the theoretical and experimental curves are attributed to the fact

that the beam diameter was an estimate. These results show that for ratios Eb/Ef of

0.71 and 0.91 and at pump energies higher than 0.75 m3, the experimental data for the

phase-conjugate reflectivity fall below the theoretically expected values, even when the

dephasing due to pump pulse energy asymmetry is taken into account. The experimental

data shown in Figure 19 lead to the same conclusion, because in this experiment the

pump pulse difference was minimized. The conclusion is that pump pulse asymmetry is

not the limiting factor for the phase conjugate efficiency in these experiments.
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A second important factor which limits the efficiency of phase conjugation is

the depletion of the pump beams. It is obvious that the four-wave mixing process can

never produce a conjugate pulse which has a higher energy density or fluence than that of

the pump pulses. However, this effect has only seldom been taken into account when

solving the coupled-wave equations for the optical phase conjugation (OPC) by

degenerate four-wave mixing (DFWM) (Refs. 18,19). Numerical solutions to these

equations, incorporating pump depletion, indicate no significant depletion effects when

the pump to probe intensity ratio is higher than 10 (Ref. 19). In Figure 20 the results of

six different experiments, each having a different ratio of probe to pump fluence Fpr/Ff

are compiled. The maximum reflectivity obtained in each experiment is plotted as a

function of the Fpr/Ff. In all experiments, except the one with Fpr/Ff = 5, this

maximum was the saturation level of the reflectivity occuring at pump pulse energy

levels above 2 mJ. Note that the power dependence in each of these experiments was

measured by varying the intensity of the source beam so as to obtain reflectivity data at

a constant pump to probe fluence ratio. In the normal setup, Fpr/Ff was equal to 0.05.

In order to investigate the influence of variations in Fpr/Ff, this ratio was decreased by

neutral density filters in the probe beam. At the lowest value of Fpr/Ff a reflectivity of

more than 300 percent was obtained, which means phase conjugated amplification of the

probe pulse. The reflectivity versus energy curve for this experiment is shown in

Figure 21. Note that this curve shows very little saturation effect, as compared to

Figure 18 for example. The cell length was 2 mm in this case. In the other extreme,

where the ratio Fpr/Ff was increased to 5 by focusing the probe beam into the sample

cell, a reflectivity of only 0.1 could be obtained. The probe beam was focused into the

center of the collimated pump beams, reducing its radius by a factor of 10, causing the

fluence of the probe beam to increase by a factor 100. However, focusing of the probe

beam has been shown to increase the quality of the phase conjugation (Refs. 20,21):

under certain conditions a lens transforms the probe beam to its spatial Fourier

transform in the focal plane, located in the interaction region of the pump beams. In this

case, the Gaussian reflectivity profile determined by the product of the pump pulse

transverse intensity profiles, acts as a spatial filter, because the reflectivity is highest in

the center of the Fourier plane, where the low spatial frequency components of the probe

beam are concentrated. In this case the phase conjugated pump beam had the same

diameter as the probe beam, whereas a phase conjugated reflection of a collimated probe
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Figure 20. Maximum value of the phase conjugate reflectivity, as obtained from
different experiments, plotted versus the ratio of probe pulse fluence to
forward pump beam fluence, Fpr/Ff*

beam reduces its beam radius. The results, however, indicate that focusing of the probe
beam leads to a stronger dependence of the PC-efficiency on the energy of the probe
pulse, re4 ucing the fidelity of the phase conjugation.

Self-focusing of the pump beams is very important as a limiting factor for the
fidelity. Although whole beam self-focusing was never observed, the phase-conjugated
beam at high pump pulse energy was degraded by small scale self-focusing, leading to
beam breakup. Experiments using a 10-mm sample cell length, indicate a lower
maximum reflectivity than 2-mm long cells. Normally one would expect a slight increase
due to the increased overlap region. This effect is attributed to an increase of the
wavefront distortions induced by small scale self-focusing in a longer sample cell.

In this discussion, generally, pump energy rather than pump intensity has been
used as the independent parameter. It was not possible to measure accurately the
beam diameters used in these experiments. Variation of the beam diameters is
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Figure 21. Phase conjugate reflectivity of CS 2 in a 2-mm cell, at a pump to probe
energy ratio of 500:1, plotted versus forward pump pulse energy. A
maximum reflectivity of 3 has been observed, i.e., an amplification of
the phase conjugated reflection of the probe beam.

estimated to be 20 percent from experiment to experiment since realignment was

involved. In addition to this, slight variations of the pulse width could occur due to

changing concentration of the passive modelocker dye.

4.1.1.3 Conclusion. The efficiency of the phase conjugate reflection of picosecond

pulses in CS2 , a transparent optical Kerr medium has been measured. Very high

reflection efficiencies were obtained although some saturation of the reflectivity at high

fluences was observed. This was attributed to "small scale" self-focusing, which is a

typical problem in high energy optical systems. The increased efficiency for the phase

conjugation of short pulses in Kerr media is explained by the fact that the influence of

the processes such as stimulated Brillouin scattering (SBS) and whole beam self-focusing,

which limit the phase conjugate efficiency of nanosecond pulses, are reduced when

picosecond pulses are used. In addition, a strong dependence of the phase conjugation

efficiency on the ratio of the pump to probe fluences was observed.
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4.1.2 Phase-Conjugation in Gold Colloids

4.1.2.1 Experimental Setup. Two types of gold colloid samples were used, a water-

based colloid, prepared following the method of Turkevich (Ref. 22) and a solid glass-

based sample obtained from Schott glass (sample type RG-6, I mm thickness). A water-

based colloid solution contains approximately 74 mg of gold per liter of water. Since the

density of gold is 19.3 g/cm3 , this corresponds to a total volume of 4 x 10- 3 cm 3 or a

volume fraction (Volgold/Voltotal) of 4 4 x 10-6. Typical values for the radius of the gold

spheres in such solutions range from - 40 A to - 120 A, corresponding to sphere volumes

between 2.7 x 10-19 and 7.2 x 10-18 cm 3 . Electron micrographs indicated that particles in

the solutions had an average radius of 120 1. This is equivalent to a number of spheres per

liter ranging from 1.5 x 1016/1 to 5.6 x 1014/1. The water-based colloid had a local

absorption maximum due to surface plasmons on the gold particles, measured by a Cary

219 spectrophotometer, of 2.76 cm-1 at 519 nm for a sample thickness of 2 mm.

Similarly, the absorption of the Schott RG-6 sample had a local maximum of 9.21 cm-1

at 535 nm. This was superimposed on a background absorption, due to interband

transitions, which becomes noticeable at - 620 nm and increases in magnitude as

wavelength decreases. The width of the peak for the local maximum was approximately

100 nm for both samples before bleaching. After bleaching, the width could not be

estimated accurately.

Optical phase conjugation measurements were made in two different pump

intensity regions. The phase of the nonlinear susceptibility was measured by means of a

nonlinear interferometer, described elsewhere (Ref. 23). A semiconductor colloid glass,

whose xW (both magnitude and phase) was previously determined, was used in one arm as

a reference and a gold colloid sample, whose phase was to be determined, was placed in

the other arm. The interferometer operated at a wavelength of 532 nm via a CW mode-

locked laser providing 1200 mW of average power at a repetition rate of 82 MHz. The

peak intensities at the sample were - I to2 kW/cm 2 .

Since the phase-conjugate ref lectivities of most high speed (i.e. picosecond

response) materials is very low at the low peak intensity levels of CW mode locked lasers

(a few kilowatts per square centimeter), scattering is comparable to the P.C.

reflectivities of - 10-10-10-9. For this reason, a lock-in amplifier was used in addition to

a series of diaphragms to reject scattered light.
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A pulsed Nd:YAG laser operating at 2 Hz and 532 nm was used for the high

intensity phase conjugate (P.C.) reflectivity measurements (see Figure 22). A passively

mode-locked oscillator was followed by a pulse selector, two amplifier stages, and a

frequency doubling crystal. This provides a 25 ps, 532 nm pulse with a diameter of

- 2 mm and energies ranging from a few tens of microjoules to a few millijoules. This

pulse is split into four components. Two counterpropagating pump beams and one weaker

probe beam are arranged in the counterpropagating DFWM geometry. The fourth

component is used as a reference signal. The reference signal as well as the phase-

conjugate signal are detected by high-voltage vacuum photodiodes. These are scanned by

gated integrators at a 4 ns gate width (long enough to allow for trigger jitter and short

enough to minimize detection of stray light). These integrators, in turn, are monitored

with a computer interface (A/D conversion) and ultimately the data are manipulated by a

DEC microvax computer.

Pulsed Wd:YAG LMW SySem for
Picowecoad Phtu*-conJuga.e

(mW CW MWO543 uwd to

cW law 0543rn pu$m #1 delay sOa

Figure 22. Laser system for high intensity, picosecond DFWM experiments.
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The water-based colloid suspension was studied both in a static, closed cell and

in a flowing cell in circuit with a 200-cc reservoir. The flowing cell arrangement was

used to minimize the influence of sample deterioration during reflectivity measurements,

while the static cell was used for absorption band measurements before and after

damage.

During some experiments, the bleaching of the gold colloid glass was

monitored by measuring the absorption in the sample. The intensity transmitted through

the four wave mixing region in the sample was measured by a photodiode, as well as a
reference signal. Thus, this system could monitor the influence of each successive laser

pulse on the absorption of the gold colloid sample. The absorption monitor at 543 nm was

assumed to be indicative of absorption changes at 532 nm, the wavelength at which the

phase conjugation experiments were carried out.

4.1.2.2 Results. Data from the high-energy, pulsed YAG laser for gold colloid glass

and water suspensions provided a power dependence reference for the phase conjugate

reflectivity for intensities ranging up to a few gigawatts per square centimeter

(Figures 23, 24a). In the initial studies, the probe beam power was - 10 percent of the

pumps and in later experiments it was adjusted to be 50 percent of the pump power. No

qualitative difference (due to the probe/pump ratio change) was detected in the structure

of the measured reflectivity power dependence. At these low overall ref lectivities, no

influence from pump depletion was expected since a probe intensity comparable to a

pump still would drain the pump by only 0.001 percent.

Data for the water-based suspension indicate that the reflectivity does not
vary significantly with pump intensity in the region of - 500 MW/cm2. This does not mean

that the P.C. reflectivity is constant but rather that it does not vary strongly and

certainly does not vary quadratically with the pump intensity as would be expected for a

P.C. process.

For the water suspension, some experiments indicated a "flat" spot or local

maximum in the intensity dependence at a pump energy flux of a few hundred micro-

joules. At higher pump intensities, the reflectivity begins to rise again as a function of

pump intensity. It is difficult to specify this power dependence analytically since, in the
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Figure 23. Phase conjugate reflectivity of Schott RG-6 gold colloid glass for high
pump intensity, probe/pump ratio = 0.1, low repetition rate, 25 ps pulses
for all beams incident (M); pump I blocked (0); pump 2 blocked (a) and
all beams incident on an undoped glass sample (+). The flat response for
gold glass is largely due to the formation of permanent gratings in the
sample. All beams are linearly copolarized.

pump energy range, the slope of the curves varies continuously on a logarithmic scale but

the range is not large enough to assign an exponential power dependence (Ref. 19). At

first glance, these power dependence curves do not display characteristics that would be

associated with the usual approximations (i.e. "tangent-squared" power dependence or

saturation of reflectivity). These results will be discussed below.

During exposure to the high power pulsed laser, the Schott RG-6 glass gold

colloidal suspension developed permanent gratings which caused the "phase conjugate"

reflectivity to remain approximately constant over a wide pump beam energy range. One

possible (partial) explanation for this result is the possibility of total particle

decomposition in the regions of the antinodes of the optical standing waves. Thus, the

total diffraction grating would be the sum of the linear gratings formed by sample

damage and the nonlinear gratings which still exist at the nodes of the optical standing

waves. If the linear contribution is assumed to dominate in the experiment, constant

reflectivity would be expected. Interestingly, the total phase conjugate signal is

sigNficantly greater than the sum of the two "separate" permanent gratings, i.e. the

signals detected when one or the other of the pump beams was blocked. This implies the
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Figure 24. Phase conjugation signal for water-based gold colloid and plain water in a
2-mm flow-through cell.
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dominance of the nonlinear contribution, in direct contradiction to the initial premise. A

hand-waving solution is to say that the nonlinear solution dominates with saturation of

the nonlinearity being the crucial factor in the case of all beams incident on the

sample.

There was also a permanent change in the absorption of the colloids, both
liquid and solid (Figures 25, 26), upon exposure to the high-power pump pulses. This

appeared as a "bleaching" of the colloid or occasionally the appearance of a pale bluish

spot. These changes appeared to be permanent. Data from the spectrophotometer

confirmed this; absorption dropped in the blue and increased in the red wavelength

region.

0.5

OAoo,

0.3- aIt . qn. *..
a. [ a•• ,, , ,

0.2 1 7_
0 10 20 30 40 50

Accumulated Energy (mJ)

Figure 25. Change in optical absorption at x = 543 nm of Schott RG-6 as a function
of total energy flux from pulsed Nd:YAG laser (4 = 532 nm) for average
pulse energies of 0.1 mJ/pulse (+) and 1.0 mJ/pulse (o).

The change in absorption in a Schott #RG-6 filter, as a function of

accumulated laser energy incident upon the sample spot was measured for two different

average laser pulse energies, 0.1 mJ and 1.0 mJ (Fig. 25). Note that, upon interrogation

by 1 m3 pump pulses, the absorption at 543 nm has permanently dropped from 0.41 to 0.3

after only a few millijoules of accumulated energy. For the same total accumulated

energy flux, the lower energy pulses have done far less damage. The most extreme
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Figure 26. Continuous absorption of water-based gold colloid in a 2-mm cell before
(a) and after (b) sample damage.

case, namely irradiation with a few hundred millijoules per second from the CW mode-

locked Nd:YAG laser, did not result in any change in absorbance although the

accumulated energy was many orders of magnitude larger than the pulsed laser provided.

At the highest pulse energies, there was also an increase in the far field spot

size of the phase conjugate; the transmitted probe pulse showed a similar phenomenon.

Since the transmitted probe pulse shares this "bloomed" appearance (generally appearing

as a somewhat distorted series of concentric rings) in the far field, the most probable

cause of the phase-conjugate "bloom" structure is that it is an accurate replication of the

self-focusing or self-defocusing of the probe signal. That this phenomenon occurs at high

intensities is expected; the self-focusing or self-defocusing phenomenon is also due to the
t hird order nonlinear susceptibility.

Figure 27 shows phase conjugate signal interference and pump signal inter-

ference from Schott RG-6 gold colloid glass and Schott OG-530 semiconductor colloid

glass as a function of the delay of one arm of the interferometer. Since the maxima and

minima of the two signals coincide and the phase of x(3) of OG-530 is known to be

negative and real, it was determined that for the high repetition rate, low peak intensity

(2 kW/cm 2 ) laser pulses, the phase of the total third order nonlinear susceptibility for the
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Figure 27. A comparison of the interference of conjugate signals (.) and reference
signals (0) from Schott RG-6 gold colloid glass and Schott OG-530
semiconductor colloid glass as a function of delay in the arm of the
nonlinear interferometer. Since the phase of the P.C. signal from OG-530
is known to be negative and real in this region, the phase of RG-6 must
be the same.
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gold colloid sample is negative and real. In other words, for X =Xreal Ximaginary, it

was determined that the effective Ximaginary is negligible compared to Xreal and that

Xreal is negative. Since the colloid sample is actually a composite system, this x(3)

cannot be attributed to the particles without further assuming that the nonlinear

susceptibility of the glass matrix is insignificant compared with that of the gold particles

at this power level. Evidence supporting this claim is that a plain glass sample of 1-mm

thickness did not provide a detectable phase-conjugate signal when pumped by the CW

mode-locked laser of the Twyman-Green interferometer. Therefore, the negative and

real nonlinear susceptibility is attributed to the gold particles.

4.1.2.3 Conclusions. The intensity dependence of the picosecond phase-conjugate

reflectivity in gold colloids for pump intensities on the order of I GW/cm2 has been

determined experimentally;, the intensity dependence of sample damage and the phase of

the nonlinear susceptibility of gold colloids has been investigated via interferometric

methods using a CW-mode-locked Nd:YAG laser; and also the significance of the phase

relationship of the nonlinear susceptibilities in a multi-component system has been

recognized. This is significant in an applications environment since the functional

intensity dependence could have its shape 'tailor-made" by adjusting the stoichiometry of

the constituents.
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4.2 COHERENT TWO-WAVE MIXING EXPERIMENTS

4.2.1 Experimental Setup

A pulsed Nd:YAG laser operating at 4 Hz was used for the two-wave mixing

experiments. The laser system consisted of a passively mode-locked oscillator which

provided a pulse train of - 10 35-ps pulses at x = 1.064 jim. A pulse selector directed one

of the most intense pulses of the train to a double-pass Nd:YAG amplifier. The selected

pulse was chosen from the leading half of the pulse train to minimize the influence of

pulse chirp on the two-wave mixing. This pulse was subsequently frequency doubled in a

KDP (KH 2 PO4 ) crystal and residual 1.064 Urm radiation was then eliminated by a harmonic

beam splitter. Pulse energies at 532 nm were on the order of I to 5 mJ, depending on the

experiment, with a standard deviation of 25 percent within any one experiment. In all

cases, the beam diameter was - 2 mm and was approximately Gaussian.

The 532 nm pulse is split into two components, corresponding to the pump and

probe pulses. Another beam splitter deflected roughly 8 percent of the pump pulse into a

detector for normalization purposes. The final input intensity (and energy) ratio was

variable with I < Ipump/Iprobe < 10 depending on the beam splitter selected. A delay

stage in the pump beam path controlled the relative arrival times of the pump and probe

pulses in the sample. The angle between the pump and probe wavevectors, outside the

sample, varied depending on the experiment, from < 0.3° (- 4 mrad) to - 4..5

(-78 mrad). Since these pulses provided intensities on the order of 109 W/cm2 , focusing

the beams was unnecessary. The initial pump reference and final probe energies were

measured as ; function of their relative arrival times in the sample by pyroelectric

detectors. The analog output of these meters were sent to an A/D converter which was

interfaced with a computer. The apparatus is shown schematically in Figure 28.

In some experiments both the pump and probe were linearly polarized, in

others the pump was circularly polarized and the probe was linearly polarized. For the

experiments in which the pump pulse had circular polarization, the probe pulse had

polarizing beam splitters before and after the sample. One of the motivations ior an

interaction of a circularly polarized pump and a linearly polarized probe was to minimize

the influence of the "Kerr Shutter" effect. It is well known that a strong, linearly
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Figure 28. Experimental apparatus and beam geometry for degenerate two-wave
mixing. PL = polarizer; DET = detector; DS = delay stage.

polarized pump causes a transient linear birefringence in Kerr media; this effect is often

used to rotate the polarization of a probe pulse and thus "time" two picosecond pulses via

the "Kerr shutter." A circularly polarized pump causes a transient circular birefringence

in a material, but this effect is expected to be insignificant in comparison to the linear

effect. For this reason, it is expected that any net change in the measured probe energy
is a result of energy transferred from the pump rather than polarization rotation of the

probe energy.

In a third group of experiments, both pump and probe pulses had circular
polarizations; a comparison was made between an interaction of pulses with identical

polarization helicity and an interaction of pulses with opposite polarization helicity.

The samples included carbon disulfide, nitrobenzene, semiconductor colloid

glass and a water-based gold particle colloid. The liquid samples were contained in

quartz cells of various thicknesses. All of these materials should have nonresonant

electronic polarizabilities with response times on the order of 10-15 s; they should have

additional response times corresponding to molecular reorientation, and various decays
from other excited states. Carbon disulfide has a characteristic response time of - I ps

(Ref. 28) and nitrobenzene has two characteristic response times, - 8 ps and a few
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nanoseconds (Refs. 24,25). Likewise the semiconductor glasses have two: - 30 ps and a

few nanoseconds (Ref. 26). Finally, the water-based gold colloid should have a very fast
response corresponding to a surface plasmon decay (Refs. 27,28,29) as well as a much

slower response due to thermal effects.

4.2.2 Experimental Results

The initial experiments were designed to produce visible self diffraction; this
phenomena is fairly well understood (Ref. 30) and the experiment is facilitated by the

fact that the propagation directions of the diffracted orders allows detection of the

process by eye. At small angles, several orders of self diffraction are visible when using

CS2 as the active medium. A sample thickness of - 5 mm showed the best compromise

between the intensity of each diffraction order and the number of diffraction orders.
Sample thicknesses of 1,2, and 10 mm also provided visible self diffraction, but the l-

and 2-mm cells did not provide as much diffracted beam intensity as the 5-mm sample
while the 10-mm sample gave more intense diffracted beams but fewer visible orders of

diffraction. All visible self diffraction disappeared for angles larger than - 20

(35 mrad). Self diffraction was present both in the case of a circularly polarized pump

and a linearly polarized pump but the intensity was visibly higher in the case of parallel

linearly polarized pump and probe pulses. Semiconductor colloid glasses and

nitrobenzene also displayed self diffraction effects, though not to extent of the CS2

sample.

Once the influence of self diffraction had been verified, the energy of the

transmitted probe pulse relative to the pump reference signal (before the sample) was
monitored. In these first experiments, an increase in the probe energy of as much as

- 10 percent was measured, depending on the relative positions of the pump and probe

pulses. At some positions, there was an apparent slight loss in the probe energy, but this

loss was of the same magnitude as the noise of instrumentation so its presence was

neglected at that time. The angle between the pump and probe pulses was then increased

to - 4.50 where the higher diffraction orders were weak enough to be considered

insignificant. It was found that the probe gains and losses were present even without the

influence of self diffraction,

By further experimentation, the losses and gains of the probe were successfully

quantified as functions of several parameters. In all of the experiments, the laser
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intensities were typically on the order of I GW/cm 2. The time axes shown on Figure 29

are not absolute. Although the scales are accurate, the origin has been arbitrarily

assigned. The actual origin (location of zero delay between the pump and probe) is

located in the region of pump probe overlap. For an experiment in which the pump and

probe are initially identical, it may be easily deduced that the origin occurs where the

net energy transfer is zero (at the crossing point). For other configurations, the origin is

shifted slightly with respect to the crossing point.

When the semiconductor colloid sample was tested (Figure 29), the results

were those of a typical pump-probe transient absorption experiment: when the output

probe polarization parallel to the input probe polarization was monitored, there was

increased transmittance (or decreased absorption) when the pump pulse passed through

the sample first. The decay of the transmittance corresponds to the excited state free

carrier decay in the semiconductor. There was also a coherence spike (Ref. 34)

superimposed on the transient absorption background. When the output probe

polarization perpendicular to the input probe polarization was monitored, there was only

a "coherence spike" present. The width of this spike was - 15 ps.

The gold colloid also displayed (Figure 30) a coherence spike in the

perpendicular polarization, but the excessive noise in the parallel polarization

experiment precluded the detection of any coherent phenomena here. Interestingly, the

gold colloid showed an increased probe transmittance for all times when the pump passed

through the sample first. It is believed that particle damage is an important process at

these high intensities and can explain the apparently permanent change in

transmittance. The nonlinear coupling in the gold colloid proved to be the weakest

coupling in the materials studied.

The most interesting results (Figures 31, 32) appeared for the Kerr media, CS2

and nitrobenzene. Both of these materials showed a "coherence spike" representing

energy transfer from the circular pump pulse to the probe pulse in the polarization

perpendicular to the original probe polarization. The width of the spike in the CS2 sample

was approximately 40 ps and the peak energy transfer corresponded to - 30 percent of

the probe input energy. The corresponding peak energy transfer in the nitrobenzene was

- 15 percent. The width of the spike in nitrobenzene could not be easily defined as it

apparently had a narrow spike (of width - 15 ps) superimposed on a broader (30-40 ps)

coherent background. Similar phenomena (i.e., probe diffraction experiments) have been
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Figure 29. Change in probe transmission in a semiconductor doped glass sample as a
function of relative probe delay. Synchronization of the pump and probe
occurs at - 200 ps on the graphs (i.e., axis origin is arbitrary). Each point
represents one laser shot.

discussed by several researchers (Refs. 30,31,32). The shape (intensity) of the diffracted

signal as a function of probe delay is explained by considering the pulse durations

(causing the broad background) and the coherence time of each of the pulses (causing the

narrower spike centered on the broad background) in materials with transient grating

decay times which are large compared to the coherence time and pulse length, so that an

"integrated-intensity" grating may be assumed.

The 15 to 20 ps coherence spikes in both the nitrobenzene and semiconductor-

doped glass samples suggest, therefore, that the laser pulses are not transform-limited.

This is expected since passively mode-locked lasers typically have incomplete mode-

locking.
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Figure 30. Change in probe transmission in a liquid gold colloid sample as a function
of relative probe delay for monitoring: Synchronization of the pump and
probe occurs at - 200 ps on the graphs (i.e., axis origin is arbitrary). Each
point represents 20 laser shots.

The intensity of the coherence spike was measured as a function of pump
intensity in CS2 . For normalization purposes, the energy of the probe coherence spike
was divided by the incident laser energy. Figure 33 shows the expected square law
dependence on the incident beam intensity.

In the case of the output probe polarization being parallel to the input
polarization, the coherent signal from CS2 was antisymmetric with respect to pump and
probe relative delay times. When the pump pulse arrived in the sample slightly before
the probe pulse, there was a net energy transfer from the pump into the probe. This
energy transfer was on the order of 20 percent of the initial probe energy. When the
probe arrived in the sample slightly before the pump pulse, it lost - 20 percent of its
initial energy. This result is in agreement with the set of integro-differential equations
presented earlier. Examination of the factors (A2 -B2) in the coupled field amplitude
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Figure 31. Change in probe transmission in a CS 2 sample as a function of relative
probe delay. Synchronization of the pump and probe occurs at - 200 ps
on the graphs (i.e., axis origin is arbitrary). Each point represents 20
laser shots.

equations indicates that a reversal of leading and trailing pulses is expected to result in a

reversal of the direction of energy transfer. Experimental results were inconclusive for

nitrobenzene; although the nonlinear optical susceptibility of nitrobenzene has a

component with a relaxation time comparable to the pulse width, the excitation of the

nonlinearity is not instantaneous and therefore the effective nonlinear excitation by

these laser pulses is diminished. The magnitude of the transfer was apparently

< 10 percent of the probe energy. However, the noise levels of the instrumentation

prevented quantification.
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Figure 32. Change in probe transmission in a nitrobenzene sample as a function of
relative probe delay. Synchronization of the pump and probe occurs at
- 200 ps on the graphs (i.e., axis origin is arbitrary). Each point
represents a laser shot.
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Figure 33. Change in probe transmission in the polarization orthogonal to that of
the initial probe polarization as a function of pump energy in the region
of - I m3 per pulse.
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Experiments were also carried out in CS2 as a function of different initial

energy ratios between the pump and probe pulses for two polarization combinations:

linear-pump/linear-probe and circular-pump/linear-probe.

In the experiments with pump and probe beams having parallel linear

polarizations (Figure 34), the results were generally not strictly antisymmetric as a

function of pump-probe relative delay. As the initial pump/probe intensity ratio

increased, the probe's maximum gains further exceeded its maximum losses. For

example, imagine a case in which the pump intensity is initially three or four times that

of the probe. If the probe preceeded the pump, it might lose 2 percent of its energy to

the pump as they passed through the sample. If instead the pump preceeded the probe,

the probe might experience gains of 6 to 7 percent. Even in the case of initially

equivalent pump and probe intensities, the antisymmetric coherent signal is present. In

this case, the probe's (or pump's) maximum gains should be the same as its maximum

losses. However, the situation is complicated experimentally by the simultaneous

occurence of self diffraction. The energy exchange increases with increasing interaction

length, while the finite beam diameter requires small intersection angles for a long

overlap length. Unfortunately, self-diffraction increases with decreasing intersection

angles. The result is that energy is drained from both the pump and the probe samples as

they pass through the sample. This means that the maximum net gain for the probe (and

pump) is decreased, while the maximum net loss is increased due to the presence of the

self-diffraction.

In order to verify this, measurements were made (Figure 35) as a function of

the intersection angle for an initial pump/probe intensity ratio of unity. At small angles,

the probes losses were indeed greater than its gains; as the intersection angle increased,

the probe's gain indeed became antisymmetric as a function of pump/probe delay.

Analogous experiments were performed using a circularly polarized pump pulse

with a linearly polarized probe. In this case, higher initial pump/probe intensity ratios

resulted in lower maximum probe gains and higher maximum probe losses. Again, as the

initial pump/probe intensity ratios approached unity, the probe% maximum losses became

comparable to its gains. The influence of the self diffraction was similar to that in the

linear polarization experiments.
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Figure 34. Change in probe transmission in a CS2 sample as a function of relative
probe delay for monitoring the polarization parallel to the initial
polarization for four initial pump probe intensity ratios for an
intersection angle of - 0.P. Synchronization of the pump and probe
occurs at - 150 ps on the graphs (i.e., axis origin is arbitrary). Each point
represents 20 laser shots.
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Figure 35. Change in probe transmission intensity in a CS2 sample as a function of
relative probe delay for monitoring the polarization parallel to the initial

polarization for five intersection angles. Synchronization of the pump
and probe occurs at - 150 ps on the graphs (i.e., axis origin is arbitrary).
Each point represents 20 laser shots.

A final experiment in CS2 demonstrated that the nonlinear coupling of two

pulses with identical circular polarization was significantly weaker than the coupling of

pulses with opposite circular polarization (Fig. 36). This is explained by noting that the

sum of two corotating circular polarizations is itself circular; a circular polarization

allows only weak molecular alignment (Ref. 33). However, the sum of two counter-

rotating circular polarizations has a linear component which can induce significant

molecular reorientation.

The results of most of these experimental configurations discussed are

summarized in Table 1.
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Figure 36. Change in probe transmission in a CS 2 sample as a function of relative
probe delay. One can deduce that zero delay (temporal synchronization
of the pump and probe) occurs at - 170 ps on the time axis.

Table I

Adjustable parameters of degenerate two-wave mixing
P olaatos Circular Pump / Linear Probe Circular Pump / Circular Probe

Linear and Monitor Parallel Monitor
Parallel Pu n de Perpendicular t Co-Rotating Counter-Rotating

Parameter and Probe Probe incident Probe polarizations polarizations

Initial ratio of Probe gains Probe losses
PunplProbe exceed probe greater than
Intensity Increases: losses probe gains

Interction angle, Probe losses typically exceed Negligible dosseacto
a, of pump and probe gains due to the influence INeligibe diffracted
probe decreases: of self diffraction losses. beams increase

Increasing laser Increase in coupling and Probe intensity crease in coup=Ig and energy
intensities energy transfer between pump increases as the ransfer. Note that corotating coupling

and probe pulses square of pump is << counterrotating coupling.

increasing optical Energy transfer in Carbon Disulfide showed a small
path length in Increase with path length as optical path was
nonlinear medium increased from 1 mm to 2mm to 5mm to 10rmm

Variation of As the pulses pass through the Probe gain is Probe gains energy when it
Purp-Probe sample, probe loses energy if it approx. sy.mnetric lags pump; loses energy when
Relative Delay: leads pump; gains energy if it Iwith delay. Loss it leads pump.Re_____la: lags punp 'ot possible I
correlation btw The nonlinear coupling which allows energy transfer is strongest when the relaxation time of
pulse duration and t optical fnonlinew'ity is comparable to the pulses length. For cases in which the nonlinear
m tlrexon relaxation time is significantly smraller or larger than the pulse width, energy transfer is
dine negligible. Response time for exchaion of the optical nonlinearity mast also be considered
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5.0 COMPARISON

5.1 LINEAR ABSORPTION SPECTRUM

The absorption of water-based gold colloids in a 2 mm cell was given by

Figure 26. Two fitting parameters, eb = 11.6 and v = 0.09 wp, were used to interpret the

linear absorption spectrum for gold particles. The two parameters appear in the resonant

denominator, which is given in Appendix A (Equation A.2a), and calculated from the

measured absorption coefficient at the surface plasma frequency both for water-based

gold colloids and Schott PG-6 glass in Section 4.1.2. The theoretical absorption spectra

for these two parameters are given in Figure 37. There is indeed a reasonable fit for the

low energy wing of the absorption spectra, where the interband transition is not the

dominant contribution.

I I I /I I I I

20- a=50AorAu

.h = 1.7689, Eb = 11. 6

1/Im[D(co,)] = 0.626226
___ I

=1 15'

V_ 10 Eh n 2.25, E - 12.0
l/Im[D()j] = 0.735968

E

5

0 -------

0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 37. The linear absorption spectra of gold colloids within the quasi-
hydrodynamic theory. The fitting parameters are eb = 11.6 and

V= 0.09 W p

E • 'p
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5.2 PHASE CON3UGATION

Starting from one of the simplest equations for phase-conjugate reflectivity

(R):

R - tan2(KL) (77)

where K is defined as the nonlinear coupling coefficient (K is proportional to x) times

the field intensity) and L is the interaction length, consider the low-conversion (low

reflectivity) limit. In this region, the phase conjugation reflectivity is proportional to

the square of K and the approximations for CS2 and gold colloid samples can be equated,

correcting for the reflectivity difference between the two and the actual volume

fraction (G 4 x 10-6) for the gold colloid:

RAu Colloid= RCS2 x 10-3 (78a)

or

(KAuLeff)2 = (Kcs 2L) 2 x 10-3 where Leff = (4 x 10-6 )L (78b)

After the substitutions:

KAu = (1.6 x 10- 8 )-1" 2 Kcs2 (79)

or equivalent, that the x(3) of the gold particle is - 104 times that of CS2 , which is about

S0- 8 esu. The phase conjugation reflectivity of the matrix is insignificant at low

intensities, but becomes comparable to that of the particles at higher intensities because

of a saturation of the nonlinear susceptibilities of the particles. Thus the suspension may

be "tailored" to vary the total optical nonlinearity in the sample.

Using the parameters of CW absorption and picosecond optical phase conjuga-

tion measurements the linear and nonlinear properties of gold colloidal suspensions were

studied. The theoretical values of x for the gold spheres can be obtained from

Equation 49 (page 46) using the fitting parameters for CW absorption in Section 5. 1, and

is on the order of 10-10 esu. This is much too low compared to the experimental value.
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This indicates that the free electron contribution which is accounted for in the model is

not the main nonlinear mechanism in the gold microparticle composites.

5.3 COHERENT TWO-WAVE MIXING

5.3.1 Transient Coherent Two-Wave Mixing in Kerr Medium

Recently there has been considerable interest in coherent beam combination
via two-wave mixing in nonlinear media due to its potential applications to optical signal

processing and high energy laser physics (Ref. 34). This process proceeds as follows: two

laser beams, a pump and a probe wave, enter a nonlinear medium and induce an optical

index grating. If the phase of this grating lags that of the interference field pattern

formed by the two incident laser beams I and II, energy will be coherently diffracted

from beam I to beam II. The diffracted beam I acquires the phase, frequency and

propagation vector of beam 11.

To date, most research on coherent beam combination via two-wave mixing

has focused on photorefractive crystals (Ref. 35) using degenerate CW beams, where a

phase lag arises due to spatial nonlocality. Many of the details of this process can be

influenced by varying the orientation of the crystal relative to the laser beams. Another

scheme for creating a phase lag between the laser interference pattern and the light

induced index grating is to utilize nondegenerate beams in optical Kerr media or other

X(3) materials with finite response time (Ref. 36). For this case, energy is coherently
transferred from the high-frequency beam to the low frequency one and the gain is a

maximum for 2r = 1. Here a is the difference in laser frequencies and T is the medium

response time. Finally, nonlinear instantaneous Kerr film coated on a metallic substrate

such as gold or silver can transfer energy between surface polaritons and laser beams

(Ref. 37).

The role of beam polarization on transient, degenerate beam combination via

two-wave mixing in CS2 utilizing Gaussian laser pulses whose pulsewidth, -rp, is not too

much greater than r was examined. For this situation, the finite response time of the

medium and the width of the laser pulses are responsible for the appearance of the re-

quired phase lag. Since this is a transient phenomenon dependent upon temporal non-

locality, the energy transferred from one beam to the other will intimately reflect the
time-dependent characteristics of the system. Prior research has focused on beams that

are linearly polarized in the same direction (Ref. 38).
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In the two-wave mixing, beam combination experiments a pulsed Nd:Yag laser

operating at 4 Hz was used. The laser system consisted of a passively mode-locked oscil-

lator that provided - 20-ps pulses at 532 nm with - I mJ. In all cases, the beam diameter

was 2 mm and the transverse profile was essentially Gaussian. The pulse is split into two

components, corresponding to the pump and probe waves with the final intensity ratio

equal to 10. A delay stage in the pump beam path controlled the relative arrival times

between the pump and probe pulses in the sample. The angle between the pump and probe

wavevectors was 4.5%, and the optical path length was 5 mm. The polarization

dependence of the coupling between the two beams was examined using a configuration

consisting of a right-circularly polarized pump pulse and a linearly polarized probe pulse.

The pump reference and polarization discriminated transmitted probe energies were

measured by pyroelectric energy meters as a function of their relative arrival times.

The Kerr medium was CS2 which has a characteristic response time of I to 2 ps.

Experimentally, it was observed that the coherent signal due to energy

transfer was asymmetric with respect to probe delay time for the case where the output

polarization was parallel to the input probe polarization. When the pump pulse arrived in

the sample slightly after the probe pulse, i.e., delay time TD < 0, there was a net energy

transfer from the probe into the pump. This energy transfer was on the order of

20 percent of the initial probe energy. When the probe arrived in the sample slightly

after the pump pulse, i.e., 'ED > 0, it gained a small fraction of its initial energy. Energy

transfer to the probe beam in the orthogonal polarization direction was also measured.

In this case, the energy transfer curve was symmetrical with respect to the pulse delay

time and achieved a maximum value of about 25 percent.

Next, a theory is presented for coherent beam combination via transient two-

wave mixing in optical Kerr media with degenerate laser pulses. The transient dynamics

of most Kerr media are reasonably well described by the Debye relaxation model. The

laser beams are governed by the wave equation

2 -n a JE(rt) 1 a2 P (80)

C at c at
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where PNL(r,t) is the nonlinear polarization and n is the linear refractive index. Since

the dynamics of the nonlinear polarization are governed by Debye relaxation, the fth

component of the nonlinear polarization is given by

P IL(r,t) =E (r,t) f t dt'djdki xl -(-= Edt T e k (r,t')E.(r,t') (81)

where dLtjki is the ijkiLh component of the third-order optical susceptibility tensor.

First the parallel polarization case, in which the pump is circularly polarized

and the probe wave is linearly polarized in the x-direction is considered. They are nearly

colinear and propagate in the z-direction. The energy of the transmitted probe polarized
in the x-direction is measured. If the pump is not significantly depleted, polarization

changes in both beams may be neglected so that the electrodynamics of beam

combination involves independent quantities: the pump (probe) intensity 11 (12) and the

phase difference * = 4I - *2" The phase difference between the two pulses is driven by

their nonlinear interaction with one another through their coupling to the Kerr medium.

Within the slowly-varying envelope approximation

L Il(zt) = - 23 / 2 (.u/nc)d [11 1'2 ]/ 2 F(z,t) (82a)

L 12 (z,t) = + 23 / 2 (irw/nc)d [1112 ]l/ 2 FXz,t) (82b)

L *(zt) = 23 / 2(iw/nc)d (I/II - 1/12] (1112)1/ 2 F" (z,t) (82c)

where L = (a/az + (n/c)a/at) and d = dxxxx is real. Equations 82a through 82c describe

energy transfer processes involving the x-component of the probe wave. The coherent-

coupling grating term F(z,t) = F(z,t) + iF"(z,t) is defined by

I1jt 1)

F(z,t) f f dt'mI(zt) 2(zt',)] 1/2exp{1(,(zXt) - (zt)) _tL-t'
-m2 

(83)
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which gives rise to coherent energy transfer between the beams. The quantity, *(z,t')-

*(z,t)) + i (t-t')/,r is driving the phase difference between the laser interference pattern

and the index grating created within the nonlinear medium by the laser beams

themselves. For steady-state situations, # is independent of time, and energy transfer

will proceed only if the laser beams are nondegenerate. However, for transient

situations o is time-dependent, and a transient phase lag will develop between the index

grating and the laser interference pattern due to the finite response time T of the

medium. Note that the L* depends upon (Il - 12), so that locally the direction of energy

transfer will depend upon the relative beam intensities.

The laser beams are modeled as Gaussian pulses, with a delay time -D between
them and identical pulse widths OTp = 10. Numerically solving Equations 82 and 83 yields

the transmitted pulse energy of the pump and probe waves. Figure 38 compares theory

to experiment for the fractional change in energy of the probe versus pulse delay time.

The solid line is theory, the diamonds are experimental data points with error bars in-

cluded, where laser fluctuations were the dominant contribution to experimental error.

An examination of this figure reveals that theory and experiment are in excellent

agreement, with theory predicting the positions of the main features correctly: e.g., the

zero crossing and the maximum fractional energy transfer and are in good overall

quantitative agreement. The greatest discrepancy occurs when the energy transfer is

small between the probe and the pump.

The physical content of these results can be stated as follows. If the pump

wave enters the medium before the probe and the time delay between them is long com-

pared to the medium response time, their overlap is insignificant and the induced index

grating is negligible. As the pulse delay decreases, the beam overlap grows and the index

grating they generate becomes substantial. If the pulse width is not too long compared

to the medium response time, the phase difference does not approach steady-state and

the phase lag between the index grating and the laser interference pattern is signifi-

cant. This manifests itself in the form of increased energy transfer. This trend con-

tinues, until the two beam phases are the same over most of the overlap region.

Although the index grating becomes deeper, the phase difference is only weakly driven by

the nonlinear coupling and the phase lag begins to decrease. This behavior is in

accordance with Equations 82a, b, and c and manifests Itself as a reduction in energy

transferred from one beam to the other. Eventually, the pulse delay reaches a point in
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Figure 38. Percentage of energy transfer versus pulse delay in CS2 for a
pump/probe intensity ratio of 10, an optical path length of 5 mm and
parallel polarization. The initial pump intensity was I GW/cm 2,

d = 8 x 10-16 cm 2/GW and r = 20 ps. The diamonds are experimental
data points with error bars Ad the curve is theory.

which no energy is transferred. Once the probe beam leads the pump, the situation

reverses itself, the phase lag changes sign and energy flows from the probe to the pump

wave. This trend continues for increasing time delays until a point is reached in which

the beam overlap is once again too weak to induce a meaningful index grating and energy

is no longer diffracted from the probe wave to the pump.

Next, the cross-polarization case with a right-circularly polarized pump wave,

a linearly polarized probe beam initially in the x-direction and energy transfer in the

y-direction of the probe is measured. Again changes in pump polarization are

neglected. The dominant grating arises from the coupling between the pump beam and

the x-component of the probe wave which, through medium nonlinear anisotropy, twists

the polarization of the diffracted beam into the y-direction. Denoting the y(x)

component of the probe intensity by 12y (12x)

L ll(z,t) a -2312(.1nc) dl6[ll2x] l2F"9z,t) (84a)
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L 12y(zst) = +2 3 / 2(,./nc) (d/6)[1112x0 1/ 2 F(z,t)1 (84b)

L *(z,t) = 23 12(ww/ncNI 12x]I1 2 d[F"(z,t))/611 + F"(z,t)/2i2 x] (84c)

where off-diagonal components of dijk" are related to the diagonal ones and F is given by

Equation 83. Note that the phase difference does not depend on the relative intensities

of the pump and probe waves so that energy is always transferred to the y-component of
the probe beam. The numerical results are shown in Figure 39. For this case, the phase

lag will not reverse sign and energy transfer is symmetric with respect to rD = 0. As the

delay time between the probe and pump increases, the index grating decreases with a

corresponding reduction in energy transfer.
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Figure 39. Percentage of energy transfer versus pulse delay in CS 2 for a
pump/probe intensity ratio of 10, an optical path length of 5 mm and
cross polarization. The initial pump intensity was I GW/cm 2,
d = 8 x 10-16 cm 2/GW and -r = 20 ps. The diamonds are experimental
data points with error bars Al~d the curve is theory.

An examination of these figures reveals that theory and experiment are in

excellent agreement for all but the shortest pulse delay times. For the smallest pulse

delay times, the index grating involving the y-component of the probe beam is significant

and since Equations 84a, b, and c ignore this effect, they underestimates the energy
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transferred. Note that although the fractional energy transfer approaches 25 percent,

pump depletion is still negligible and therefore the pump polarization remains essentially

circular.

The temporal pulse shapes at output are Gaussian for Gaussian input pulses

with pulse widths being 10 -r. Frequency chip is negligible for the optical path lengths

used.

To summarize: polarization resolved coherent two-wave mixing experiments

have been performed using degenerate, frequency-doubled Nd:Yag picosecond laser

pulses in CS2 , with a circularly polarized pump and a linearly polarized probe wave.
Theoretical predictions are in excellent agreement with the measurements, and the

important role of beam polarization in this process can be seen clearly by comparing the

parallel-polarized and cross-polarized cases.

5.3.2 Transient Coherent Two-Wave Mixing in Metallic Colloids (Gold and Silver)

As a comparison to the Kerr medium discussed in Section 5.3.1, the coherent

part of the third-order polarization for probe wave at w2 in a Kerr medium is worked out

with the Debye relaxation time characteristics and is given by

p(3C)(t) = dik e- ,-2 t 4/2-w 1 1 (•- v2v12 1/2 T (
L(T eCT 2 1 - ) O(ts¶D) P (Te/T) (85)

where the overlap function O(trD) and the dimensionless polarization prefactor P(Te/0)

are given by Equations 68b and 68d. In Equation 85, both input pulses are taken to be

Gaussian and are defined as in Equation 64: t is the phenomenological relaxation time and

TD is the probe delay time. Comparing Equations 85 and 67, the inhomogeneous part of

the time-dependent third-order polarization for microparticle composites is the same as

a Kerr medium with the Debye relaxation characteristics. The homogeneous part has

additional time asymmetric factor resulting from the additional fourth field enhance-

ment factor involved.

In Figures 40 through 42, the dimensionless time-dependent polarization

prefactors are plotted as functions of the probe delay times. One can see the effective

decay times are much shorter in the heavily damped spheres, viz. v = 0.1 w1p. When the
decay time is much shorter than the pulse widths, the CW limit for shorter pulses takes
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Figure 40. The time-dependence prefactors versus probe delay time for silver
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100 1. pulse widths 0 ps and t = x/v.
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Figure 41. The time-dependence prefactors versus probe delay time for silver
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effect and the time-dependent behaviors are solely determined by the overlap of the

incident pulses. Note that there is more asymmetry in the homogeneous part than the

inhomogeneous part.

The transient behavior for the metallic microparticle composites for the

inhomogeneous (driven) third-order polarization is the same as the Kerr medium

considered in Section 5.3.1, since they are driven by the nonlinear polarization with the

same time-dependence, c.f. Equations 85 and 67. For the homogeneous contribution the

additional time asymmetry will enhance the gain in the positive probe delay time. This

was indeed observed in the transient two-wave mixing experiments in gold colloids (see

Figure 30). Also all the homogeneous contributions are larger than the corresponding

inhomogeneous counterparts. This is the reminiscence of the additional enhancement

field factor in the homogeneous parts.
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6.0 A ONE-DIMENSIONAL CONJUGATED POLYMER

6.1 ONE-DIMENSIONAL VIBRON-LATTICE MODEL

The conjugated polymers with x-electrons have been demonstrated to have high

electrical conductivity and unusual nonlinear optical properties. The potential high speed

(subpicoseconds) and large spectral range are very attractive for nonlinear optical

processing. The nonlinearity associated with n-electrons is the nonresonant type, which
provides the large spectral range. The w-electron response time is limited by the one-

dimensional diffusion time, which is much shorter than the three-dimensional one and is
on the order of subpicoseconds. The band gaps will be determined by the shortest

wavelength in the applications.

Here we use a simple and tractable one-dimensional vibron model (Ref. 39) is

used within the framework of lattice dynamics to describe conjugated polymers and were
able to predict the values of off-resonant x(3) with reasonable accuracy.

I
Particular attention will be given to Polyacetylene (PA) which contains a high

density of n-electrons and promises an ultrafast response time. It has been measured

(Ref. 40) to have x(3) = 10- 10 esu at off-resonance spanning from 1.17 eV to 1.5 eV
with a 0.1 ps response time and have xI3) = 10-9 esu at the narrow two-photon
resonance peak centered at 0.91 eV with a response time of a few ps.

The w-electrons of PA are modeled by vibrons with harmonic on-site potential

and nearest neighbor interaction between them. The a-backbone of PA, which is formed

by CH groups, is modeled by a one-dimensional (ID) lattice within the harmonic lattice
approximation. The interaction between the n-electrons and a-backbone is also restricted

to nearest neighbors. To be more specific, the model Hamiltonian of PA is chosen as

follows:

H =Hi + Ha + Hint + Vext (86)

In Equation 86, the Hamiltonian HT for n-electrons (or vibrons) is given by

H, 1m % Iq2 + I V (q~ -I L(n~m) ~q (87a)
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where me and qn are the mass, velocity and displacement of the n-th W-electrons. The

on-site potential v(qn) for n-th vibron is assumed to be harmonic type and is given by

v(qn) = 2oq (87b)

where the eigen frequency to is closely related to the bandwidth W of the i-electron band

structure. The interaction L(n,m) among the i-electrons is reduced to

L L(n,m) qmqn = LO I (qn+l + qn-1) qn (87c)
nfl n

for the nearest neighbor interaction among them. The nearest neighbor interaction

constant Lo is related to the hopping integral to in SSH Hamiltonian (Ref. 41), viz.

Lo M mew to (88)

where to = 2.5 eV for PA.

The Hamiltonian H. for a-backbone (or 1-D lattice) is given by

H M I u +1K I (U - Un) 2  (89)
n n

where M, Un and Un+i are the mass, velocity and displacement of the n-th CH group (or

the n+ I-th lattice site); and K is the effective spring constant of the I-D lattice. The K

is equal to 21 eV/A (from Reference 41).

The interaction Hamiltonian Hint between the vibrons (i-electrons) and the

lattice (a-backbone) is given by

Hint - ' X ((Un+l - Un) qn+1 + (Un -Un- 1  qn1 ) q n
n 

(90)
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where the nearest neighbor interaction is assumed and the vibron-lattice coupling

constant ). is related to the electron-phonon coupling constant a in SSH Hamiltonian

(Ref. 41), viz.

M =ho 
(91)

where a = 4.1 eV/A for PA.

The response Vext to the external optical field is assumed to be electric-dipole

interaction, viz.

Vext = eqnE (92)

where E is the electric field of the external optical pulse.

From the model Hamiltonian, the equation of motion for PA is given by

Me qn + Inewo qn - 2L 0 (qn+1 + qn-1

- 2x [(Un+1 - Un) qn+1 + (Un - Un-1) qn-11 -eE (93a)

MUn + K ( 2 Un - Un+1 - U n 1 ) + 21 (qn+l - qn- 1 ) qn =0

(93b)

which are respectively for the x-electron and CH group at the n-th site. Since M >> me

and hence ,n<< 4 n . adiabatic approximation can be used to reduce Equation 93b as

follows.

K( 2 Un - Un+1 - Un-1) + 21 (qn+ - qn-1) qn = 0 (94)

Equation 94 can be integrated and have

Un n+1 (n +n-) qn + Uo9
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where U0 is an integration constant, and is equal to zero or 0.04 A for undimerized

(unconjugated) or dimerized (conjugated) PA, respectively.

This model Hamiltonian can be employed to design and study other conjugated

polymers.

6.2 THIRD-ORDER NONLINEAR SUSCEPTIBILITY

The equation of motion, Equation 93 within the adiabatic approximation for

the third-order susceptibility of PA will be solved in this section.

Substituting Equation 95 into Equation 93a, the equation of motion for the n-th

x-electron is obtained,

2
"M2qn 2*oqn - 2(L 0+ WU0) (qn+l + qn-1

42 [(qn+l + qn) qn+1 + (qn + qn 1 ) qn 11 = -eE

where K is the effective nonlinear coefficient for the u-electrons, and this particular

combination is the consequence of the electron-photon interaction.

Equation 96 can be used to solve for the linear and nonlinear response of the
x-electrons in the presence of an optical field at w, viz.

E = Eoe-.ut + c.c. (97)

For a I-D lattice, the linear displacement of the n-th u-electron can be written

as

qn = qlei(kan'-t) + c.c. (98)

where a is the lattice spacing (or the spacing between CH group). The amplitude q,

obeys the following linearized equations
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[me(wo= 2 2) - 4 (Lo+ WU- cos ka)] q= -eEoe-lkan (99a)

which yields

eE0  -ikan
q= - e (99b)

with the linear dispersion relation &l(w) at w is given by

Aj(W) = Me( 2)_ 4 (Lo+ xUo) coska (100)

The linear dipole moment at w of a PA chain with N-sites is given by

N kan NeEo 2Eapl(w) e I q n 1• qe = - (101a)

n=1 1Ný

The corresponding polarization without local field correction is given by

Pl(W) (1) E1

NaA =x E ( 0b)

where the linear susceptibility x (1) (w) along the chain is given by

x(1() _ a eA Ie2  (102)

with A as the cross-section of the PA chain, and A = 3.125 x 10-15 cm 2 .

The measured dielectric constants (Ref. 42) at 9.1 GHz for trans-PA are

= 5.7 and e. = 4.0, respectively. From Equation 102 and the measured e

Aj(w - 0) = 1.62 x 104 erg/cm2  (103)

Equating Equations 100 and 103

h 1o = 11.91 eV (104)
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which is comparable to the bandwidth w = 10 - 12 eV.

The static dispersion relation tl(w = 0) is also related to the energy gap of the

i-electrons, viz.

"I (w) = me (105)

which yields Eg = 2.78 eV with Equation 103 and is comparable to the observed optical

gap 2.0 to 2.2 eV.

The displacement of the I-D lattice up to the third-order at ( can be written as

qn = (q! + q3 ) ei(kan - wt) + c.c. (106)

where ql and q3 are the amplitudes of linear and nonlinear displacements. The nonlinear

amplitude q 3 obeys the following equation,

8k 2
= • (2 + 3 coska + cos2ka) 1q,1 2 q, (107a)

where q, is given by Equation 99b. Then

e3 2e~ Eo-tkan

q3  - - 2- (2+3 coska + cos2ka) e12Ee)
3I A 112 Al (107b)

Then the third-order nonlinear polarization at w without local field correction

is given by

P3(&) = x3) (.a) IE012 Eo (108)
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where the third-order susceptibility along the chain is given by

x ( 3 () =e4 )'2 8(2+3 coska + cos2ka (109)x=aA K 1()2 1a1(w)12

In Equations 107 and 108, the condition of wavelength being long compared to the lattice

spacing, i.e., ka << I, can be used. In Equation 109 every parameter is fixed, and yields

P) (w = 0) = 3 .04 x 10-10 esu (li0a)

x(3) (hw = I ev) = 5.3 x 10-10 esu (110b)

P) (hw = 1.5 ev) = 1.2 x l0-9 esu (110c)

which is in reasonable agreement with the measured values x(3) = 10-10 esu spanning

1.17 eV to 1.5 eV.

This model can be extended to include the coulomb interaction and to study

other conjugated polymers.
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7.0 CONCLUSIONS

This report reviews theoretical and experimental research into the active

nonlinear optical processes primarily in the microparticle composites and also in

conjugated polymers.

The experimental studies done at the University of California at Irvine focused

on the transient effects in the phase conjugation and coherent beam combination (or

coherent two-wave mixing) using picosecond pulses. Beside the time-resolved

experiments, the polarization resolved experiments were performed to demonstrate the

coherent coupling nature in the two-wave mixing processes.

The theoretical studies emphasized the physical mechanisms for the nonlinear

properties of the metallic microparticle composites and the conjugated polymers. The

modeling of the nonlinear optical processes, viz. the phase conjugation and coherent

beam combination, was carried out for the Kerr media and the metallic microparticle

composites. The theory for the transient effects of the Kerr medium and the

microparticle composites is discussed using either the time-dependent third-order

polarization appearing in the Maxwell' equations or by solving the Maxwell's equations

and the dynamic equation of the medium simultaneously. The additional asymmetry

observed with respect to the probe delay time in the two-wave mixing experiments for

microparticle composites is predicted in the calculated time-dependent third-order

polarization.

In the past much attention has been paid to the study of linear optical

properties of small metallic particles. The mechanisms of the surface plasma resonance

and of the broadening of the linear absorption band in small spherical particles have been

widely investigated. The calculation for the linear optical properties was first performed

assuming independent electrons in the local approximation and improvements were then

brought by introducing the nonlocal character of the response of electrons. Recently,

the nonlinear optical phenomena present in such particles have been studied using optical

phase conjugation in metallic colloids. The surface plasma resonance occurs for this

nonlinear process in the same way as for linear properties.
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A solid-state nonlocal continuum theory has been developed for the nonlinear

electrodynamics of the microparticle composites. The calculation of the Kerr-type

polarizability for the free electron part of small metallic spheres using the quasi-

hydrodynamic theory has been done in this report. It is understood that some approxima-

tions have to be introduced in order to perform tractable analytical calculation. The

quasi-hydrodynamic theory which includes the possibility of single particle-collective

mode interactions is a simpler alternative to a classical kinetic theory or a quantum self-

consistent field approach. However, the interba•ld transition contribution of the

microspheres by a frequency-independent background dielectric function Lb to

renormalize the free electrons has been taken into account. The free path effect

approximation is used for the surface-scattering-contributed additional damping inside

the microparticles. Silver spheres can be described accurately by this model. That is,

the calculated third-order susceptibility from dressed free electrons and the measured

third-order susceptibility are comparable in silver spheres, which are both 10-9 esu. Gold

spheres can be explained by this model with two fitting parameters, i.e., the background

dielectric constant and the damping factor, for their free electron contribution.

However, the calculated third-order susceptibility from free electrons in gold spheres is

much too small compared to the measured one, which indicates the important interband

contribution in the optical nonlinearity for gold.

A semi-classical lattice-dynamic theory was derived to predict the large non-

resonant optical nonlinearity below the band gap for 1-D conjugated polymers. The

characteristic electron-photon interaction driven electronic nonlinearity is clearly

identified in the formalism of the Kerr-type polarizability calculation for conjugated

polymers.

The theoretical studies concentrated on the electronic nonlinearity of the

microparticle composites which is caused by free (or conduction) electrons. This

nonlinearity was also the focus of the short (picosecond) pulse experiments. The findings

will have applications in high bit-rate transmission and communications.

The electronic nonlinearity involved in the microparticle composites is a

resonant type, which results from the local field enhancement of the excited surface

plasma modes and always is accompanied by an enhanced linear absorption for lossy

materials. Since it is a resonant nonlinearity, there is limited spectral range for the
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nonlinearity, which is 0.05 urm or 0.1 pm for silver or gold particles. Because of the

enhancement in the linear absorption, the nonlinear efficiency must be optimized with

some compromise in the absorption loss, which can be achieved by the small volume

fractions or thin samples. The optimal thicknesses of the samples are a few milli-

meters. Small volume fraction is also needed to eliminate the unwanted scattering loss,

which has to be less than 10-4. Because of the potential excessive Mie scattering from

large particles, the particle size below 100 A must also be restricted.

In the experimental studies, the microparticle composites were used for

picosecond phase conjugation as well as weak probe signal amplification. The time-

resolved and/or polarization resolved degenerate phase conjugation and two-wave mixing

experiments were performed in the microparticle composites with a volume fraction

between 4 x 10-6 and 10-5 with particle radii < 120 A. The degradation of the conjugated

or amplified images from the scattering by particles is negligible with aforementioned

limits of the sizes and volume fractions. However, the absorption from the particles is

influential under all circumstances, which limits the sample thicknesses to I to 2 mm.

The relaxation time of the free (or conduction) electron part of electronic

nonlinearity in the metallic microparticle composites is on the order of tens of femto-

seconds according to the quasi-hydrodynamic theory. However, in the case of the gold

the bound (or valence) electron contributed electronic nonlinearity contributed by the

interband transition will have much longer relaxation time. For the two-wave mixing

experiments the relaxation time was on the order of tens of picoseconds.

The conjugated polymers, which have nonresonant nonlinearity below the band

gap with potential subpicosecond relaxation time because of fast one-dimensional

diffusion characteristics were also investigated. Because the nonlinearity is a

nonresonant type, the spectral range of the conjugated polymer is large. However, there

is the shortest wavelength limit in the nonlinear conjugated polymer applications, which

is set by the band gap. The limits on the band gap of the polymers can be easily tailored

by the chemical engineering, e.g., by doping or using a different backbone element. The

PAs, considered here to have a band gap of 2 eV, are suitable for IR applications. The

polysilanes and polygermanes have band gaps in the UV region and can be useful for all

visible applications.
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APPENDIX A

To solve Equation 7a for a sphere, expand the electron density in the following

series

nl(rwj) = zAIM(qja) Il(qjr)Yl,(e,*) (A.1)

where a is the radius of the sphere and in(z) is the nth order modified spherical Bessel
function of qj = q(wj). In spherical coordinates r = (rge,*) and Ylm(e,*) is the
spherical harmonic of order (l,m). Since the w1 laser beam is elliptically polarized,
nl(r,w) consists of the I = 1, m = t I term. The 2laser beam is linearly polarized in the
• 2 = (xcose 2 + zs0ne2 ) direction and n1(r,w2) contains the I = 1, m = ±1 (see Fig. 1).

Applying the boundary conditions at the surface yields the following solutions for the

first-order electron density at the two laser frequencies

nl(r.,l) = e N(r.,1)Al(qcose + sine sin#)/Dl(w1) (A.2a)

nl(rw 2) = eb N(r..2)A2(stne cose + cose stnecos#)/D (A.2b)4wea 2  2  o 1(02)

The boundary conditions yield the following expression for N(raj)

N(r,.j) = 3 hc("j)qjal 1 (qjr)/ajII(qja) (A.2c)

where i'l(z) implying the derivative with respect to z, and the denominator D1 (wj) is given

by

DI(j) - Eb(1 -'l/Qj) + 2eh(wj)[1 - tl(qja)/ajqjat1 (qja)] (A.2d)

with a = (W• + iv)/.2 and v is assumed to be frequency independent. The real part
of this important denominator vanishes at (s. This denominator dominates the

electrodynamics of microparticle composites whenever the surface (or Frohlich) dipole
mode is excited by wj = ws"

The-first order electric field El (r.wj) is given by
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E1r (r.wl) = Er (r,wi) Aj(qcose + sine s1fl*)/Dl(wl) (A.3a)

E1r (r, w2) = 'r (rIw2 ) A 2(slne2 cose + case 2slnecos*)/Dl (w2) (A.3b)

E le(r,wl) = z,(r,wl) A1(-niisne + case sln#)/Dl(wl) (A.3c)

E 18(r 'w2) = z,(r -w2)A2 (Cose 2cosecos# - sine 2 sne)/D 1 (w2) (A.3d)

E 14(r~wl) - z a(rw,w)Al cos*/Dl(w,) (A.3e)

E 1,(r -w2) = -z,(r -w2)A 2cose2slin#/01 (w2) (A.3f)

where

E r(r~wj) - 3ch~(wj) I'-'1j(q ir)/a i11 (qja)J (A.3g)

E a(r~wj) - 36h(wj) [l-11(qjr)/ojqjrii(qja)J (A.3h)

The first order electron drift velocity vj(r~wj) is

vir (rgwi) - 'r(~jVOqo9+ sine sin#)/01 (wl) (A.4a)
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vi(rw) r(r n)V o snecose + cose slnecos*)/D1( 2  (A.4b)

v le(r~wj) = E8(r,w1)Vj0(-nsine + coso slfl*)/Dl(wl) (A.4c)

V le(r,w2) = E(r~w2)V20( cose2 cosecos* - sine 2 sne)/D 1(w2) (A.4d)

V 1#(r.w,) = Eo(r,w1)Vj0cos#/Dj(W1 ) (A.4e)

v 1,(r~w2) - -E,(r 1w2)V20cose2sin*/Dj(w2) (A.4f)

where Vjo = -ieAj/m(wj + iv) and the various E are defined as

Er(ruwj) = 3ch(wj)[l - 1' 1 (qjr)/1'j(qja)J (A.4g)

E 0(r.waj) - 36h$wj)Il - ij(qjr)/1'j(qja)qjrJ (A.4h)

Outside the microparticle, the f irst-order electric field is dipolar in nature. In
the near (static) zone, the electrostatic potential of a sphere is given by

- -r + -M ---- ) A e1  (A.5)
r2

where the angular functions elare given by
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01 = ncose + sinesin# (A.6a)

02 - slne2 cose + cose 2 sinesln# (A.6b)

In Equation A.5, the first-order dipole moment at wi is given by

u(1)(ut) -L a- a3 p11) (ta) (A.7)
4,3

where a is the radius of the sphere and the first-order polarization is given by

P(1)(, 4 3 Lbb- h(o1) 3ebeh(w1) 12 (qia)
b 2ch(wt) - b 26h(wit) QtI(qta)D1 (wt) (A.8)
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APPENDIX B

First, the different components S±- (r) of the driver term S±(r) in
1j

Equations 2.11 depend only weakly on frequeApy and do not reflect the surface mode
resonances of the microparticles, and are defined below:

St (r + S (r) -3[1 (rw) (r~w + (~ (r~wl)]La/rr 0r 2 0  lwEr'-±2)+E r e'2wr 1 (B.la)

S± (r) N N(r.wi)Er(r,±w2) + Nl(r ± 2 z(r,wl)
r20I w2z

+ Nl(rgwl) Er(rs,±w2)wl/(±w2+1v)±N,(r,±w2)Er(rgwl)w2/(wl+iv)

-L±[Rr(r~wl)ErI (r.±-w2)~ES(r.wj) Er(r-±w2)a/r)I

+2/3(o/w Pa) 21Nj(r,w1)Nj' (r +-w2)+Nl(r ,±w2 )N1 (r,wl) I)
(B.lb)

S ± (r) S±+ (r) +2L-+ a(r~wl) 2,(r,±t2 (B.1c)
820 *21 r a6 2

S02 r)- 9 , r~ 1 ±w2) - 4 S, r ±w2 go1) + L± -F E(r,wl) E,(r,±w2) ( -d

S 21+ (r) - 4 S(r.wj1±W2) + 4 ,r± 2 a 1  ±I~(~ 1  6 r±w2)
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Se 22 (r) = Se20 (r) + 3Lt + •e(r,wl) •E(r, t w2) (B.1f)

S 21 (r) = S,(r, 1 ,9±w2 ) + S,(r,_+2 ,i 1) (B.lg)

S 22 (r) = 7 S,(rw 1 _ w2) - 3 S,(r, ± w2,wi) + 3L- a w2)
(B.lh)

and

S,(r,lw 2 ) = Nl(r,wl)ze(r,_w2 ) + Nl(r,wl)•e(r.•w2 )w1/(tw2+ iv)

-Er(r,wji) ' e(r,+w2 )L-+

+ 2/3(8/wpa) 2 NI(r,=w)N 2 (r.,w2 )a/r (B.10

where the dimensionless linear electron density NI(rwj) is given in Equation A.2c and the

L+ function is defined by

1±L 2 lv ~' ~(B.2a)
L+ p2[(wl+ 'v) (±w2+ 'v)]- B.a

and the primed functions are defined as

F'(r,wj) - a aF(r,wj)/ar (B.2b)
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Then, to solve Equations 2.8 for a sphere, expand n2 (r,w+) in terms of sherical

harmonics as nl(r,wj).

n2 (r,w+) = E B1m(q+a)il(q+r)Y1M(e.,)

+ fdr'[Gs(q_+r,r' )v-S+(r')1/82 (B.3a)

where the integral is an inhomogeneous term, the coefficients Blm are determined by the

boundary conditions. The Green's function Gs(qtIr,r') is given by

Gs(q+Ir.r') = q+zll(q+r<)Kl(q+r>)Yl M(eh,, )Ylm(e,,) (B.3b)

where * implies a complex conjugate. The sum and difference-frequency fields obey the

Laplace equation

V2 e2(r,=+) = 0 (B.4a)

outside the microparticle, and the Poisson equation

v 2.(r,w±) = 4 wen 2 (r.w±_)/eb (B.4b)

within it. Equations B.2 will be solved by expanding in spherical harmonics. Thus,

outside the sphere,
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=2(rw+) zCl,(q+a) r-(l+l)Ylm(e,¢) (B.5a)

The electrostatic potential inside the microparticle is driven by the second-order charge

density, n2 (r,w±). Thus, within this region, the second-order electrostatic potential is

written as

2(r,w_+) = zD1,(q_+a) r 1Ylm(e,o) - (4,e/eb)fdr'Go(r~r')n 2 (r',w+)

(B.5b)

where Go(r,r') is the Green% function for the Laplace equation. The coefficients for the

various multipole fields CIm and Dim are determined by the electrostatic boundary

conditions at the surface of the microsphere. The first-order fields exhibit a dipolar

character outside the microparticle, therefore, the electrostatic fields consist of I = 1,

m = ti at w 1 , and t = I m = +1 at w2. Thus, the second-order fields should have monopole
and quadrupole characters. The second-order electrostatic field should consist of I = 0

and the I = 2, m = (0,±1, ±2) terms. However, a monopole field vanishes by charge

conservation. Hence, only the coefficients for the quandrupole contribute, i.e., D2 0

(C 2 0 ), D2 ±W (C 2 ±I) and D2 +2(C 2±2 ) are non-zero. Finally, the second-order drift

velocity, v2 (r,=w) can be expressed in terms of n 2(r,w±) and *2 (rw+) via Euler's

Equation and given by

'I

V2(r,w+) v2 (rw+) + v2 (r.w+) (B.6)

where

v;(rwu) -- [S±(r) - (noe/m)v#(rwt) + o2v n2 (r,w+)]/no(w+ + iv)

(B.6a)
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and

"v2(r"-) = - no nl(rn" 1 )vl(r,±-2 ) - l(r
0 ±0 (B.6b)

Equations B.I through B.3, along with the boundary conditions on the drift velocity and

the electrostatic potential, completely determine the unknown coefficients BIm, Cim and

Dime It is a tedious but a straightforward task to obtain the following expression for the

density n 2 (r,w+):

n2(r,w_+) = r+((4,/9) 112n2 , 0 0 (rw+)nsine2Y0 0 (e)

+ (16w/45) 112 n2 , 2 0 • r,w+)nsine 2 Y2 0 (e)

- (2-r/15) 1 12 n2 ,21 (r,w_+)ncose 2 [Y2 1 (eo) - Y2_1(0,0)1

+ i (2w/15) 11 2 n2 , 2 1+(r,w+)sine 2 [Y2 1 (e8.) + YZI(e,*)]

-1(2w/15) 12n2 . 2 2 (r,o+) cose 2 [Y2 2 (e,6) - Y2 _2 (e,6)1}

(B.7a)

where

r c b AbA1A2 qta/4%wm2D(wl)D(t12 ) (B.7b)
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where q+ = _wp - (W+ + Iv) 1/2/o . The quantity r+, which has units of density,

exhibits resonant behavior if w1 and/or w2 lie near the surface dipole mode frequency Ws.

This feature of the second-order density response follows directly from the drive term,

S+(r). An examination of Equation B.7a reveals the important role of the initial

geometry as manifested in the angle e2 and the initial polarization as manifested in n.

The dimensionless functions in monopole and quadrupole radial density

n2,00(rpw+) and n2 ,2 m(r,w+) are given by

n 2 ,00(r.w+) = io(q+r)JO0 0 s(aw+)/il(q+a) - JO0 0 (rw+) (B.7c)

n 2 , 2 m(r,w+) = J2m(aw+)i2(q_+r)/ij(q+a)D2(_+)-j2m(r,_+) (B.7d)

where the denominator D2(w+), which appears only in the quadrupole radial density terms
in Equation B.7d, is given by

D2(w+±) = 2eb(Q±+ - 1) + 3 eh(w_+) (az+ - 21 2 (q+a)/q_+ai(q+a)] (B.8)

where Q_+ = w+(W+ + 1v)/W . Note that D2(w±) is a function only of w:, not wl or w2

individually. This feature follows because D2(w±) reflects the possibility of exciting a

surface mode if w: coincides with a quadrupole Frohlich surface resonant frequency wq.

In Equations B.7, the functions J1m(r,w±) are defined as

SIM (r,w+_) = kl(q_+r)j' m '(r'+) + i,(q+r)j (rw+) (B.9a)

where (1,m) = (0,0), (2,0) and (2,1), two functions J00S and •21 are defined by
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J00S(rgw±) = . rdrrJ0 (r o+) (.b
a 0B9b

J2m(rgw±) =(
3Eh(ow±) + 2eb) (il+± 1) J~m(agiw±)

+3ch(w±+)J 2m(a~o+) (B.9c)

with

Jj,(r~w+) =KI'(q~r)jz,< (r~w+) + i1'(q~r)jIm > (r.w+) (B.9d)

J2mS(r.w+) qj f r drsr4j (ru)(B9e
- a 40 2 )(-e

The functions j, '<(rsm±) and j1 m>(r,w,) are given by

J004(rgw+) = (q+/a2)for dr 'r .21. (q~r')S(rl)(Bl

Joo>(rgw+) = (q+/a )~dr'r2k'0 (q~r')St r)(.lb
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"Jm<(r,=w) = (q/a 2 ) f 0rdr'r' 2 V 2 (q~r')S2 (r')

+ (1/a 2 )f 0rdr'r' '(q+r)S± (r') (B.10c)+2( )2m

and

J2>(r'w+) = (q+/a 2 )fradr'r' 2 k2 (q~r')Sr (r')

+ (1/a 2 )fradr'r'k 2 (q~r')S± (r') (B.10d)
62m

where the S LM(r) are given in Equations B.I.

The next focus is on the electric component of the second-order electric fields
oscillating at the sum and difference-frequencies in the vicinity of the microparticle.

Inside the particle, the various components of the electric field are given by

E2 r(rw±) = E2 0 ((4w/9)l/ 2 stne 2 nYoo(e)z (r)

+ (16w/45) 1/ 2 stne2 nY2 0 (e)zX2 0 (r)

- (2/15) 112 cose2 n[Y 21 (e,*)-Y2 1 (e,.)]z4.21(r)
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+ i(2w/15) 1 12 sine21Y2 1 (e,) + Y2 _(e,*)] z, 2 1 (r)

- i (2,/15) 1 / 2 cose 2 fY22(e,*) - Y22 (e,t)] ,22 (r))

(B.1La)

E2e(rw±) = E2 0 {16,/45)1/2 sine2T -Y 2 0 (e) z, 2 0 (r)2e 20Y21Be2(e,) ze)]

(2v/15)1/2 cose 2 n a - Y2 _Y(e, te, 2 1 _(r)

21 Be Y21(e,0) +2 €81)] E,

+ 1 (2,/15)1/2 sine2 + Y2 _l(e,) z, 2 1 +(r)
2 [Y221(e,*) +,21(')] E8 r)}

(2v/15)1/2 cose 2 - [- Y (r

238 22(0O,) - Y-(9) 62

(B.1 b)

1sine a9 Y 2 1 (e,* ) Y2 1 (e,,)] z8 , 2 1 -(r)+2(,± = E2{(2w/15)1/2 csinen• I aY2-1

2 -sn-o * 2(8,4) + Y2-1(8'4)1 1e,21+(r)

S1(2w/15)1/2 css -e8-2 [Y1 _ (12 sine [Y2 2 (e,8) Y2 2 (e)] zE, 2 2 (r)}

(B.1 c)
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where

E = 4wer /bq+ (B.12)

Thus, the second-order electric fields have r,e and 4-components. This

complex polarization structure arises from the fact that the incident fields for the

noncollinear configuration break the cylindrical symmetry of the system, a point which is

underscored by the fact that the *-component of the electric field vanishes, viz, the

cylindrical symmetry is restored, if the two laser beams are collinear (i.e., 62 = W/2) and

copolarized. The functions z ± (r) are dimensionless field strengths which are defined

by:

Zr+o(r) = (a/r)2Joos(ro+)-Joos(aw+) i(q+r)Iil(q+a) (B.13a)

:r, + (r) = 2Q+z 2 (a,w+)r/a + z2m(r,w+) - (2/3)z2mG(r,w+) (B.I3b)

Xz+,(r) = Q_+z(aw+)r/a - [z2m(rw+) + Z (r,_+)13 (B.13c)

where

Q_+ - (ch(_+-) - Eb)/(3ch(w_+) + 2eb)

The functions z-2(rw+) and 2,mG(rw+) are defined as

z12(rw±) = 3/5[(a/r) 4Jm(r,w±)--2 (a,w+)3(q+r)/)(q_+a)D(

(B.14a)
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z2mG(r,w+) = 3/5[q+rJ 2mG(r,w+)

-Jm(a,=_+) {i (q_+r)-i 1(q_+a) r/a}/ii(q_+a)D2(w_+)I

(B.14b)

with u00S, j2nS and 3 2mS are given in Equations B.7b, B.7c and B.7e and

J 2mG(rw+) = fradr'JJ2m(r',w_+)/ri (B.15)

The electric field inside the microparticle has two possible frequencies where

a surface mode resonance can be excited. Specifically, the presence of the r_+ factor
implies possible resonant enhancement of the field if w1 and/or w2 coincide with the

surface dipolar mode. Further, the D2(w+) resonant denominator in Equations B.14

implies that the quadrupole surface mode at w+ can also amplify the field. In actual

practice, all three frequencies (wI, w2 and w+) cannot coincide with a Frohlich resonance

for the second-order processes discussed here.

Outside the microparticle, the electric fields are quadrupolar in nature. In the

near (static) zone, the electrostatic potential of a sphere is given by

02(r,w.) = 1/3{(16i/45)l/ 2 Y2 0 (e)Qzz

- (2v/15)1/2 IY2 1 (e,*) - Y2 _l(e0,)]Qxz)/r 3  (B.16)

The components of the quadrupole moment, Qpv, in terms of the dimensionless quantities

U2j are given by
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= -161er_+sine 2U20a 5 /3(3Eh(W) + 2 Eb) (B.17a)

xz = -4wercoseU2 1a 5/(3ch(W_) + 2 •b) (B.t7b)

where U is the dimensionless function in the quadrupole moments and given by

Ut fa r4dr n, 2,m(rw+) (B.18a)

= [J,(a,-_.)13 (q+a)ID2 (_.) -J 2m(a,w_)I/q+a (B.18b)

As expected, the quadrupole moments and the electrostatic field outside the micropar-

ticle are also surface enhanced if either of the frequencies wI or w2 coincides with the

surface dipole resonance (from r±) or wt with the surface quadrupole resonance from
D2(,w,)).

The second-order electron drift velocity v2 (rw+) in Equation B.6a is given

by

V;r(rw+) = V2 0 [(4,/9)112 stne2 nYoo(e)'tr.o(r)

+ (16x/45) 112 stne2 nY2 0 (e)- 2 0 (r)

-(21/15) 11 2 cose 2 n(Y2 1 (e,*) - Y2_1(e,*))'-,21_(r)

+ i (2w/15)1/2 slne2 (Y2 l(e,*) + Y2 _1 (e,8)) 'e 2 1+(r)

- I (2,/15)1/2 cose2 (Y2 2 (e,*) - Y2 _2 (e,-)) Ite, 2 2 (r)]

(B.19a)
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v 0 (r,w+) =V 201(l6ii/45)" 1 2 sine n 1- Y20 e E±(r

- (,/5)12 ~s 2q .j ( 21(6,*) - Y2 -1(e.o)) 1±92 1 -r

+ 1 (2w/15)1/2 sine2 1 (Y21 e~

- 1(211)12 os2 ae ( 22(o,0) - Y2-.2(0,4')) E±,22(r)I

(B.19b)

v 11(r,w+) = I20 - (2w/15) 112 cosen 4... (Y21(8.0) - Y21 e~)~ 1 r

+ 2s/15)1/'2 sine I a
+1 s~-eI-4 (Y1e* 216') .1(r)

22/5)/ sone a1 (Y l~' 2-'"

- (,11)12 c sine 84 22(09#) - Y2 -2(0-#)) Ez, 2 2 (r)]

(B.19c)

where

V 20 - 1 2q+ r+In 0(W+ + iv) (B.20)

And the dimensionless function E±,(r) is given by

=JOOS(a.w±) ii(q~r)/il(q~a) - Jý(r,w+) 2 22

(B.21a)

.2(r 12 (.w 12(q~r)/1i(q~a)D2(~ 2 (~~

2 2F (B.21b)
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z,2,(r) = a2,(r) + 72-T2 S 0 ,2m(r) (B.21c)
q~a

I- .21(r) = °51(r) + - -s;,1r (B.21d)
2 -T- o~, 2 1r)

q~a

where J' a, S
OOS" +0' j2m" Se,2m a ,21 are defined previously in Equations B.7,

B.8 and B.9, z am is the dimensionless field strengths given in Equations

B.13, qTF = wp/0 . and

+z (r 2 2

a = (r) n.2,2(r,w+)/q+r +1:,2(r) q2_/q2 (B.22)
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APPENDIX C

To solve Equations 2.12 for a sphere, expand n3(rwj) in terms of spherical

harmonics as ni(r,=w) and n2 (r,w+.

n 3 (rwj) = z G1l(qja)1l(qjr)Y1 M(eO,)

+ jdr [Gs(qjrr )v-T(rm;wj)/IB2 (C.la)

where the integral is an inhomogeneous term and the coefficients Gim are determined by

the boundary conditions. The Green's function GS(qjlr,r') is given by

Gs(qjlr.r') = qj EI 1 (qjr<)K1 (qjr>)Y1V*(e' ,O')Y 1 M(e,,) (C.1b)

where * implies a complex conjugate. The third-order fields at wj obey the Laplace

equation

V2* 3 (rwj) = 0 (C.2a)

outside the microparticle, and Poisson equation

v2. 3 (rwj) = 4 1ren 3 (rwj)/b (C.2b)
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within it. Equations C.2 will be solved by expanding in spherical harmonics. Thus,

outside the sphere, we have

* 3 (rwj) = £E1M(qja) r-(l+l)Ylm(O,0) (C.3a)

The electrostatic potential inside the microparticle is driven by the third-order charge

density, n3 (r,wj). Thus, within this region, the third-order electrostatic potential is

written as

* 3 (rwj) = TFgl(qja) r1Y1m(e,o) - (4we/eb)fdr'Go(rr')n 3 (r',wj)

(C.3b)

where Go(r,r') is the Green's function for the Laplace equation. The coefficients for the

various multipole fields Elm and FIm are determined by the electrostatic boundary

conditions at the surface of the microsphere. The first-order fields exhibit a dipolar

character outside the microparticle, viz, the electrostatic fields consist of I = 1, m = ±1

at w , and it = I m = ±_I at w2 . The second-order fields have monopole and quadrupole

characters. The second-order electrostatic fields consist of I = 0 and the I = 2,

m = (0,±l,±2) terms. However, a monopole field vanishes by charge conservation. Hence,

only the quadrupole contributions are nonzero. Then, the third-order field should have

dipole and octupole characters, since the third-order electrostatic fields consist of t = 1,

m = 0, ± I and z = 3, m = 0, m = ± I, m = ± 2, m = ± 3 terms. Finally, the third-order

drift velocity, v3 (r,wj) can be expressed in terms of n3 (r,wj) andI 3 (r,wj) via Eulers

Equation and given by

v3 (r,wj) = v3 (r,wj) + v3 (r~wj) (C.4)

where
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#1

v3 (rwj) = -1[T(r;wj) - (noe/m)ve(r.wj) + B2 v n3 (r.wj)]/no(-j+ iv)

(C.5a)

and

v3 (rwl) = - L nl(r' 2 )v 2 (rw) - - n2 (rw-)vl(r, 2 )
n0 w)n02w)

1 1
no 1(r- 2 ) v2 (rw+) - - n2 (rw+) vl(r,-w2 )

0 n 0 -w2)(C.5b)

Equations C. I through C.3, along with the boundary conditions on the drift velocity and

the electrostatic potential, completely determine the unknown coefficients Elm, Flm,

and Gim. It is a tedious, but a straightforward task to obtain the following expression for

the density n 3(r,w ):

2

n3 (r"wj) = 11 3j ( 4 x/ 3 ) n 3 1 ' 1 0(r.wj) Y10 (e)

+ t (2/3)11/2n3 1 s 1 1 (r.wj) [Y1 1 (e,,) + Yl_l(e,)]) A )

+ I n3.3,(rwj) Y3 m(O,*) (C.6a)

where

r c bAjqja 2 /4Am 2 04Dl(WJ) (C.6b)
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where q= [w - Wj(Wj + iv) .1 1 2 /S . The third-order density exhibits resonant

behavior if w1 and/or w2 lie near the surface dipole mode frequency Ws. This feature of the

third-order density response follows directly from the drive term, T(r;wj). In

Equation C.6a, only the dipole terms which contribute to the third-order susceptibility

are written out more explicitly.

The dimensionless functions in dipole radial density n3 i,I 0 (rWj) and n3i, I I(rwj)

are given by

"n31, Im(rwj) = i)-Llm(rwj)

(C.6c)

where the denominator Dl(wj), which appears in the dipole radial density terms in

Equation C.6c, is given by Equation A.2d.

In Equations C.6, the functions Llm(r,w;) are defined as

L ,(rwj) = k,(qjr)z,, <(rwj) + l({qjr)zzm>(rwj) (C.7a)

where (z,m) = (1,0) and (1,I), function 1m is defined by

Eim(rAj) = (2 ch(wj) + Ed (2j- 1) L1 m(a.wj)

+2ch (wj) L,,(a,wj) (C.7b)

with
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Lj,(r.wj) = Kt' (qjr)ztm"<(r~wj) + 11'(q~r)i 9.M> (r~wj) (C.7c)

L111.,(r~wj) = 4f rdr'r3Lm(rhqwj) (C.7d)
S a 30

The functions jqm<(r,wj) and ttm>(r,w j) are given by

R.im<'(r.wj) =(qj/a
2)fo rdr'r- 2 1j(qjr')Tr (rl;w.)

j ~ l j rim

+ (1 a )f 0 rdr'rhij(qjr') IT, 1 (rl;wj) + T4' (r';w.)1 C.a

and

11,> (r.wj) =(qj/a
2 )fradr-r 2 k(qjr')Trl (rin;wj)

+ (1/a 2)f radr 'rekj(qjr ') [T o 1 (r';wj) + , , r ; j ( .b

Outside the microparticle, the electric f ields are dipole and octupole in
nature. In the near (static) zone, the dipole part of electrostatic pc ential of a sphere is
given by
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03(r,wj -- ((4w/3)11/2 Y10()Uo(3) (j)

+ i (2w/3)I12 [Y11(e,0 ) - Yl((e,.)]uf 3 )(w)

(C.9)

The components of the third-order dipole moment, urn(3), in terms of the dimensionless

quantities p(3) are given by

U(3) ( = - v 2 a (3 )~ A1  2 1
-3 j1 1 a i"'m ' I-TD I qj (2 eh(wJ) + Eb) (C.IOa)

where p(3) is the dimensionless function in the third-order dipole moments and

given by

p(3) f
P1m (wJ) a3 2 o r 3 dr n31,1m(r'wj) (C.lOb)

= 1[lm(a,.j)12(qja)lojli(qja) Dl(wj) -Llms(a~wj)

(C.10c)

As expected, the third-order dipole moments and the third-order electrostatic field

outside the microparticle are also surface enhanced if either of the frequencies w, or W2
coincides with the surface dipole resonance.

In Equation C.10c, the first and second terms are contributed by the
homogeneous and inhomogeneous solution of the third-order density given in Equation

C.6a. The homogeneous part has an additional local field enhancement factor as
compared to the inhomogeneous part for the third-order polarization in the frequency

domain. This difference between the homogeneous and inhomogeneous parts will appear

in the time-dependent third-order polarization to be discussed in Section 3.3.2.
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The three factors of the local field enhancement are due to the third-order
nonlinear processed in the small spheres and the additional fourth factor appearing in the
homogeneous part occurring through the boundary condition of the sphere for the
homogeneous part of the third-order density.

Finally, the nonlinear third-order polarization of a single sphere is given by

2 A. A 2p 3)(W 2 (3) p(3) (W A" Uý Ai

M 1 0 im DjT(T ~jTT(C. IIa)

where

(3) = -
3 eb e2a2  (C.1ab)

0 4w(2ch(wj) + eb) m 2 4
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